The series of articles contains a comparison of the possibilities of using data from three sources for mapping people, with diff erent spatial, thematic and time accuracy. These are data from Corine Land Cover (CLC) and Urban Atlas (UA) projects and the result of object classifi cation (OBIA) of RapidEye data. The information on the existence of building zone included on the land use and land cover maps (LULC) constituted a limiting variable in the dasymetric method of population mapping. Categories related to building types allowed for the introduction of variable relationships, diversifying population density. These treatments enabled multi-variant development of maps of spatial population occurrence at a higher level than the original census units.The experiment was carried out in the area of Krakow. Statistical data from 141 urban units (u.u.) of the city were used. Generation of population maps was carried out in several variants. Divisions of buildings were made depending on its characteristics and functions. The results of population conversion were analyzed on Central Statistical Offi ce (hereafter referred as CSO, in Polish: GUS) data in a kilometer grid and on a specially prepared map of the population including a part of Krakow. The applied double verifi cation allowed to rank the obtained population maps and provide border spatial accuracy of their cellular representation.The fi rst part of the cycle presents the state of knowledge about population mapping and population conversion using the dasymetric method. The area of research is described. Spatial and statistical data used in the research were characterized. Works related to population conversion based on CLC and UA were presented. Six maps of the population distribution of Krakow were obtained. A multi-variant process of recalculating and setting weights for various types of buildings is described by providing for urban units the values of RMSE and MAPE. Population using the surface-weight method based on UA data was considered the best (MAPE 66%, RMSE 3442 people/u.u.). On CLC data, these errors were: MAPE 168%, RMSE 5690 people/u.u.In the subsequent parts of the cycle, the population conversion will be presented using object-oriented classifi cation. The methodology for the verifi cation of results will be described based on a photointepretation map of the population and the GUS perimeter grid. A discussion will be conducted related to the use of RMSE and MAPE measures. The ranking of methods and recommendations improving the results of population redistribution based on CLC, UA and OBIA will be given.
The series of articles contains a comparison of the use of information on building zones from three sources for dasymetric population mapping: from the Corine Land Cover project (CLC), from the Urban Atlas project (UA) and from the object classifi cation (OBIA) of the RapidEye data. These sources are characterized by varying spatial and thematic accuracy as well as a diff erent methodology of building separation. The experiment was carried out in the area of Kraków, using statistical data from 141 urban units (u.u.) of the city.In the fi rst part of the cycle, population conversions were presented based on the Corine Land Cover (CLC) and Urban Atlas (UA) databases. The second part presents the methodology of mapping construction zones, divided into several categories, by means of object classifi cation (OBIA). The classifi cations were carried out on four RapidEye satellite images. The developed map is the basis for the population calculation in three variants: binary method, and two surface-weight aggregation methods, where the proportions of population density for diff erent building categories are calculated by minimizing square error (RMSE) and percentage (MAPE) in census units. The obtained results of the population distribution indicate the need to determine the function of development. Therefore, in addition, experiments were carried out combining OBIA results with the LULC map of the UA project. From the experiments it appears that from the tested six variants of population mapping the best is the surface-weight method based on OBIA+UA (RMSE = 4,270 people/u.u., MAPE = 75%.). Binary method based on OBIA+UA results at RMSE = 4540 people/u.u., MAPE = 108%. Results with the use of OBIA, without correction of building functions with UA, are incorrect (RMSE: 5958-7987 people/u.u., MAPE: 2262%-6612 %).In the subsequent parts of the publication cycle, the results obtained so far will be compared: three CLC-based maps, three UA-based maps, six maps based on OBIA / OBIA+UA. To verify the population map, a detailed reference map of the Bronowice district will be used as well as a 1-kilometer GUS grid. A discussion will be conducted related to the use of RMSE and MAPE parameters in the process of results optimization. A ranking of methods and recommendations will be developed to improve the results of population conversion based on CLC, UA and OBIA.Słowa kluczowe: dane demografi czne, modelowanie dazymetryczne, klasyfi kacja obiektowa, RapidEye StreszczenieCykl artykułów zawiera porównanie możliwości wykorzystania do kartowania ludności informacji o strefach zabudowy z trzech źródeł: z projektu Corine Land Cover (CLC), z projektu Urban Atlas (UA) oraz z wyniku klasyfi kacji obiektowej (OBIA) danych RapidEye. Źródła te charakteryzują się różną dokładnością przestrzenną i tematyczną oraz różną metodologią wyodrębniania zabudowy. Eksperyment przeprowadzono na obszarze Krakowa, wykorzystując dane statystyczne ze 141 jednostek urbanistycznych miasta.W pierwszej części cyklu zaprezentowano przeliczanie populacji w oparciu...
The paper is a continuation and summary of a series of publications related to the dasymetric estimation of the distribution of the population of Krakow. The conversion of the population from the original census units is based on the development data from three sources, the Corine Land Cover project (CLC), the Urban Atlas project (UA) and the object classification (OBIA) of the RapidEye data. The experiment was conducted using archival statistical data from 2009 from 141 urban units (u.u.) of the city.In the first two parts of the cycle population conversion was presented on the basis of CLC, UA and OBIA maps, obtaining a total of 12 maps of Krakow's population. The obtained error distributions were presented and the calculated weights of population density for each category of residential buildings were discussed. In the third part of the cycle (Pirowski and Berka, 2019) the results were analyzed in detail by reference to the reference, high-resolution population map of the Bronowice district (north-western part of the city).In this publication, ending the cycle, population maps were verified on the basis of a kilometre grid of the Central Statistical Office (GUS), which is an aggregation of data from the National Census of Population and Housing 2011, made available by the Office in 2017. The results of high-resolution verification carried out in the Bronowice district were compared with the data of the CSO (GUS). In the GUS grid the best results were obtained for surface and weight UA methods (RMSE 908-917 people; MAPE 42-46%). The estimation of population distribution using OBIA data (RMSE 1115-2073 people; MAPE 121-184%) was found to be incorrect. After the correction of OBIA by UA data, a significant improvement in the results for surface-weighted methods was obtained (RMSE 930-1067 people; MAPE 53-68%), however, the error rate was still higher than for UA itself, which eliminates the OBIA method from practical applications in this area.A correlation was found between the RMSE and MAPE errors recorded in UC at the stage of weight selection and the RMSE and MAPE errors recorded in the GUS grid, respectively R2(RMSE)=91%, R2(MAPE)=65%. Therefore, the correlation detected indicates that the low errors obtained at the selection stage translate into reliable population estimates. The proposed weighting methodology limits the subjectivity of the method, based on the minimisation of RMSE and MAPE in the original census units. The disadvantage of the method is that it is necessary to define the boundary conditions for the selection of weights, in case of obtaining unreal weights and the possibility of occurrence of equifinality phenomenon, difficult to detect in the absence of additional reference data. Słowa kluczowe: dane spisowe GUS, modelowanie dazymetryczne, mapy pokrycia i użytkowania terenu, korelacja poziomu błędów Abstrakt Artykuł jest kontynuacją i podsumowaniem cyklu publikacji związanych z dazymetrycznym szacowaniem rozmieszczenia ludności Krakowa. Przeliczanie ludności z pierwotnych jednostek spisowyc...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.