The crystal structure of 1H-pyrazol-2-ium hydrogen oxalate has been studied at 100 K. It consists of two-dimensional layers built with one-dimensional chains that contain pyrazolium and oxalate acids bonded by N-HO and O-HO hydrogen bonds. According to the X-ray data and the Quantum Theory of Atoms in Molecules, it was shown that weak and moderate hydrogen bonds are present in the crystal at room temperature. The thermal stability was studied with the DSC, TGA, and DTG methods: three endothermic peaks are observed at 384, 420, and 469 K. Conductivity measurements have been performed in the temperature range from 300 to 433 K. At 383 K the pyrazole-oxalic acid framework loses its rigidity and the crystal undergoes an ordered-disordered phase transition. At this temperature, the value of the activation energy of proton conductivity changes from 1.14 to 2.31 eV. The proton conduction pathways and the transport mechanism have been studied with theoretical methods.
A new composite flame retardant coating for cotton roving has been investigated. The proposed coating comprises natural lignin, pure carbon allotrope carbon nanotubes (CNTs) and non-toxic potassium carbonate (K2CO3). The series of complementary experiments, including thermogravimetric analysis, vertical burning in fire tube, limiting oxygen index (LOI) measurement and combustion in mass loss calorimeter enabled the formulation of an optimum composition including aqueous suspension with 1 wt% of CNTs, 1 wt% lignin (L) as well as 1 wt% of K2CO3. Applying L/CNT/K2CO3 on cotton roving increased LOI from 17.1 to 38.5%, decreased final mass loss and temperature during vertical burning from 100 to 78% and 457 to 190 °C, respectively. Moreover, peak heat release rate and total heat released dropped from 97.5 to 70.4 kW/m2 and from 4.2 to 1.6 MJ/m2, respectively . The above experiments supported by scanning electron microscopy and Raman spectroscopy allowed also the explanation of the complementary mechanisms responsible for the overall fire retardant effect.
The physical properties of two proton conductors 1H-1,2,4-triazol-4-ium hydrogen oxalate (TriOX) and 1H-imidazol-3-ium hydrogen oxalate (ImiOX) were investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.