No abstract
Automatic detection of cognates helps downstream NLP tasks of Machine Translation, Cross-lingual Information Retrieval, Computational Phylogenetics and Cross-lingual Named Entity Recognition. Previous approaches for the task of cognate detection use orthographic, phonetic and semantic similarity based features sets. In this paper, we propose a novel method for enriching the feature sets, with cognitive features extracted from human readers' gaze behaviour. We collect gaze behaviour data for a small sample of cognates and show that extracted cognitive features help the task of cognate detection. However, gaze data collection and annotation is a costly task. We use the collected gaze behaviour data to predict cognitive features for a larger sample and show that predicted cognitive features, also, significantly improve the task performance. We report improvements of 10% with the collected gaze features, and 12% using the predicted gaze features, over the previously proposed approaches. Furthermore, we release the collected gaze behaviour data along with our code and cross-lingual models.
Cognates are variants of the same lexical form across different languages; for example "fonema" in Spanish and "phoneme" in English are cognates, both of which mean "a unit of sound". The task of automatic detection of cognates among any two languages can help downstream NLP tasks such as Cross-lingual Information Retrieval, Computational Phylogenetics, and Machine Translation. In this paper, we demonstrate the use of cross-lingual word embeddings for detecting cognates among fourteen Indian Languages. Our approach introduces the use of context from a knowledge graph to generate improved feature representations for cognate detection. We then evaluate the impact of our cognate detection mechanism on neural machine translation (NMT), as a downstream task. We evaluate our methods to detect cognates on a challenging dataset of twelve Indian languages, namely, Sanskrit, Hindi, Assamese, Oriya, Kannada, Gujarati, Tamil, Telugu, Punjabi, Bengali, Marathi, and Malayalam. Additionally, we create evaluation datasets for two more Indian languages, Konkani and Nepali 1 . We observe an improvement of up to 18% points, in terms of F-score, for cognate detection. Furthermore, we observe that cognates extracted using our method help improve NMT quality by up to 2.76 BLEU. We also release 2 our code, newly constructed datasets and cross-lingual models publicly.
Lung diseases such as COVID-19, tuberculosis (TB), and pneumonia continue to be serious global health concerns that affect millions of people worldwide. In medical practice, chest X-ray examinations have emerged as the norm for diagnosing diseases, particularly chest infections such as COVID-19. Paramedics and scientists are working intensively to create a reliable and precise approach for early-stage COVID-19 diagnosis in order to save lives. But with a variety of symptoms, medical diagnosis of these disorders poses special difficulties. It is essential to address their identification and timely diagnosis in order to successfully treat and prevent these illnesses. In this research, a multiclass classification approach using state-of-the-art methods for deep learning and image processing is proposed. This method takes into account the robustness and efficiency of the system in order to increase diagnostic precision of chest diseases. A comparison between a brand-new convolution neural network (CNN) and several transfer learning pre-trained models including VGG19, ResNet, DenseNet, EfficientNet, and InceptionNet is recommended. Publicly available and widely used research datasets like Shenzen, Montogomery, the multiclass Kaggle dataset and the NIH dataset were used to rigorously test the model. Recall, precision, F1-score, and Area Under Curve (AUC) score are used to evaluate and compare the performance of the proposed model. An AUC value of 0.95 for COVID-19, 0.99 for TB, and 0.98 for pneumonia is obtained using the proposed network. Recall and precision ratings of 0.95, 0.98, and 0.97, respectively, likewise met high standards. Using chest X-rays, the proposed model was found to be remarkably accurate at detecting chest diseases in various scenarios and conditions. Our testing data set shows that the suggested model outperforms competitors' approaches significantly, achieving state-of-the-art results, and creating a benchmark for medical diagnosis through chest scans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.