Phylosymbiosis refers to a congruent pattern between the similarity of microbiomes of different species and the branching pattern of the host phylogeny. Phylosymbiosis has been detected in a variety of vertebrate and invertebrate hosts, but has only been assessed in geographically isolated populations. We tested for phylosymbiosis in eight (sub)species of western chipmunks with overlapping ranges and ecological niches; we used a nuclear (Acrosin) and a mitochondrial (CYTB) phylogenetic marker because there are many instances of mitochondrial introgression in chipmunks. We predicted that similarity among microbiomes increases with: 1) increasing host mitochondrial relatedness, 2) increasing host nuclear genome relatedness, and 3) decreasing geographic distance among hosts. We did not find statistical evidence supporting phylosymbiosis in western chipmunks. Furthermore, in contrast to studies of other mammalian microbiomes, similarity of chipmunk microbiomes is not predominantly determined by host species. Sampling site explained most variation in microbiome composition, indicating an important role of local environment in shaping microbiomes. Fecal microbiomes of chipmunks were dominated by Bacteroidetes (72.2%), followed by Firmicutes (24.5%), which is one of the highest abundances of Bacteroidetes detected in wild mammals. Future work will need to elucidate the effects of habitat, ecology and host genomics on chipmunk microbiomes.
Methylobacterium is a group of methylotrophic microbes associated with soil, fresh water, and particularly the phyllosphere, the aerial part of plants that has been well-studied in terms of physiology but whose evolutionary history and taxonomy are unclear. Recent work has suggested that Methylobacterium is much more diverse than thought previously, questioning its status as an ecologically and phylogenetically coherent taxonomic genus. However, taxonomic and evolutionary studies of Methylobacterium have mostly been restricted to model species, often isolated from habitats other than the phyllosphere, and have yet to utilize comprehensive phylogenomic methods to examine gene trees, gene content, or synteny. By analyzing 189 Methylobacterium genomes from a wide range of habitats, including the phyllosphere, we inferred a robust phylogenetic tree while explicitly accounting for the impact of horizontal gene transfer. We showed that Methylobacterium contains four evolutionarily distinct groups of bacteria (namely A, B, C, D), characterized by different genome size, GC content, gene content and genome architecture, revealing the dynamic nature of Methylobacterium genomes. In addition to recovering 59 described species, we identified 45 candidate species, mostly phyllosphere-associated, stressing the significance of plants as a reservoir of Methylobacterium diversity. We inferred an ancient transition from a free-living lifestyle to association with plant roots in Methylobacteriaceae ancestor, followed by phyllosphere association of three of the major groups (A, B, D), whose early branching in Methylobacterium history has been heavily obscured by HGT. Together, our work lays the foundations for a thorough redefinition of Methylobacterium taxonomy, beginning with the abandonment of Methylorubrum.
Methylobacterium is a group of methylotrophic microbes associated with soil, fresh water, and particularly the phyllosphere, the aerial part of plants that has been well-studied in terms of physiology but whose evolutionary history and taxonomy are unclear. Recent work has suggested that Methylobacterium is much more diverse than thought previously, questioning its status as an ecologically and phylogenetically coherent taxonomic genus. However, taxonomic and evolutionary studies of Methylobacterium have mostly been restricted to model species, often isolated from habitats other than the phyllosphere, and have yet to utilize comprehensive phylogenomic methods to examine gene trees, gene content, or synteny. By analyzing 189 Methylobacterium genomes from a wide range of habitats, including the phyllosphere, we inferred a robust phylogenetic tree while explicitly accounting for the impact of horizontal gene transfers. We showed that Methylobacterium contains four evolutionary distinct groups of bacteria (namely A, B, C, D), characterized by different genome size, GC content, gene content and genome architecture, revealing the dynamic nature of Methylobacterium genomes. In addition of recovering 59 described species, we identified 45 candidate species, mostly phyllosphere-associated, stressing the significance of plants as a reservoir of Methylobacterium diversity. We inferred an ancient transition from a free-living lifestyle to association with plant roots in Methylobacteriaceae ancestor, followed by phyllosphere association of three of the major groups (A, B, D), which early branching in Methylobacterium history was heavily obscured by HGT. Together, our work lays the foundations for a thorough redefinition of Methylobacterium taxonomy, beginning with the abandon of Methylorubrum.
The great bustard is the heaviest bird capable of flight and an iconic species of the Eurasian steppe. Populations of both currently recognized subspecies are highly fragmented and critically small in Asia. We used DNA sequence data from the mitochondrial cytochrome b gene and the mitochondrial control region to estimate the degree of mitochondrial differentiation and rates of female gene flow between the subspecies. We obtained genetic samples from 51 individuals of Otis tarda dybowskii representing multiple populations, including the first samples from Kazakhstan and Mongolia and samples from near the Altai Mountains, the proposed geographic divide between the subspecies, allowing for better characterization of the boundary between the 2 subspecies. We compared these with existing sequence data (n = 66) from Otis tarda tarda. Our results suggest, though do not conclusively prove, that O. t. dybowskii and O. t. tarda may be distinct species. The geographic distribution of haplotypes, phylogenetic analysis, analyses of molecular variance, and coalescent estimation of divergence time and female migration rates indicate that O. t. tarda and O. t. dybowskii are highly differentiated in the mitochondrial genome, have been isolated for approximately 1.4 million years, and exchange much less than 1 female migrant per generation. Our findings indicate that the 2 forms should at least be recognized and managed as separate evolutionary units. Populations in Xinjiang, China and Khövsgöl and Bulgan, Mongolia exhibited the highest levels of genetic diversity and should be prioritized in conservation planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.