Endwall heat transfer measurements have been acquired in a vane cascade over a range of turbulence conditions and Reynolds numbers using an array of small commercial infrared (IR) cameras. The linear cascade was tested over five inlet turbulence conditions ranging from low turbulence (0.7%) to high turbulence (17.4%) and three exit chord Reynolds numbers ranging from 500,000 to 2,000,000. The small commercial IR cameras have a resolution of 384 by 288 pixels. The cascade was modified with small zinc selenide windows to provide IR access. The cameras were calibrated against a constant temperature test plate. The output images were adjusted for the fisheye effect and thermal droop at the edges. The large-scale cascade, used in the endwall heat transfer study, was configured in a four vane three full passage arrangement. The vane design includes a large leading and aft loading. This same cascade has been used in the acquisition of vane surface heat transfer distributions, vane suction surface heat transfer visualizations, and vane surface film cooling distributions. This paper includes comparisons with two LES calculations, which were conducted prior to the acquisition of the heat transfer data. The influence of the secondary flows on the endwall heat transfer distributions, including the leading edge horseshoe vortex system, is particularly visible at lower turbulence levels and lower Reynolds numbers. However, at higher turbulence levels the influence of secondary flows is less visible but the influence of Reynolds number and turbulence on transition can be discerned.
Endwall heat transfer measurements have been acquired in a vane cascade over a range of turbulence conditions and Reynolds numbers using an array of small commercial infrared (IR) cameras. The linear cascade was tested over five inlet turbulence conditions ranging from low turbulence (0.7%) to high turbulence (17.4%) and three exit chord Reynolds numbers ranging from 500,000 to 2,000,000. The small commercial IR cameras made by Therm-App have a resolution of 384 by 288 pixels and were connected to individual smart phones to record the images. The cascade was modified with small zinc selenide windows to provide IR access for the cameras. The five cameras were calibrated against a constant temperature test plate and the output images were adjusted for the fisheye effect and thermal droop at the edges. The large-scale low-speed cascade, used in the endwall heat transfer study, was configured in a four vane three full passage arrangement. The vane design includes a large leading and aft loading. This same cascade has been used in the acquisition of vane surface heat transfer distributions, vane suction surface heat transfer visualizations, and vane surface film cooling distributions. This paper includes comparisons with two LES calculations, which were conducted prior to the acquisition of the heat transfer data. The influence of the secondary flows on the endwall heat transfer distributions, including the leading edge horseshoe vortex system, is particularly visible at lower turbulence levels and lower Reynolds numbers. However, at higher turbulence levels the influence of secondary flows is less visible but the influence of Reynolds number and turbulence on transition can be discerned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.