Autonomous AI systems need complex computational techniques for planning and performing actions. Planning and acting require significant deliberation because an intelligent system must coordinate and integrate these activities in order to act effectively in the real world. This book presents a comprehensive paradigm of planning and acting using the most recent and advanced automated-planning techniques. It explains the computational deliberation capabilities that allow an actor, whether physical or virtual, to reason about its actions, choose them, organize them purposefully, and act deliberately to achieve an objective. Useful for students, practitioners, and researchers, this book covers state-of-the-art planning techniques, acting techniques, and their integration which will allow readers to design intelligent systems that are able to act effectively in the real world.
An autonomous robot offers a challenging and ideal field for the study of intelligent architectures. Autonomy within a rational be havior could be evaluated by the robot's effectiveness and robust ness in carrying out tasks in different and ill-known environments. It raises major requirements on the control architecture. Further more, a robot as a programmable machine brings up other archi tectural needs, such as the ease and quality of its specification and programming. This article describes an integrated architecture that allows a mobile robot to plan its tasks—taking into account temporal and domain constraints, to perform corresponding actions and to con trol their execution in real-time—while being reactive to possible events. The general architecture is composed of three levels: a de cision level, an execution level, and a functional level. The latter is composed of modules that embed the functions achieving sensor- data processing and effector control. The decision level is goal and event driven, and it may have several layers, according to the application; their basic structure is a planner/supervisor pair that enables the architecture to integrate deliberation and reaction. The proposed architecture relies naturally on several representa tions, programming paradigms, and processing approaches, which meet the precise requirements that are specified for each level. The authors have developed proper tools to meet these specifications and implement each level of the architecture: a temporal planner, IxTeT; a procedural system for task refinement and supervision, PRS; Kheops for the reactive control of the functional level, and GenoM for the specification and integration of modules at that level Validation of the temporal and logical properties of the reactive parts of the system, through these tools, are presented. Instances of the proposed architecture have been integrated into several indoor and outdoor robots. Examples from real-world ex perimentations are provided and analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.