Worldwide research efforts in drug discovery involving HIV integrase have produced only one compound, raltegravir, that has been approved for clinical use in HIV/AIDS. As resistance, toxicity and drug-drug interactions are recurring issues with all classes of anti-HIV drugs, the discovery of novel integrase inhibitors remains a significant scientific challenge. We have designed a lead HIV-1 strand transfer (ST) inhibitor (IC50 70 nM), strategically assembled on a pyridinone scaffold. A focused structure-activity investigation of this parent compound led to a significantly more potent ST inhibitor, 2 (IC50 6 ± 3 nM). Compound 2 exhibits good stability in pooled human liver microsomes. It also displays a notably favorable profile with respect to key human cytochrome P450 (CYP) isozymes and human UDP glucuronosyl transferases (UGTs). The prodrug of inhibitor 2, i.e., compound 10, was found to possess remarkable anti-HIV-1 activity in cell culture (EC50 9 ± 4 nM, CC50 135 ± 7 μM, therapeutic index = 15,000).
Research efforts on the human immunodeficiency virus (HIV) integrase have resulted in two approved drugs. However, co-infection of HIV with Mycobacterium tuberculosis and other microbial and viral agents has introduced added complications to this pandemic, requiring favorable drug-drug interaction profiles for antiviral therapeutics targeting HIV. Cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) are pivotal determining factors in the occurrence of adverse drug-drug interactions. For this reason, it is important that anti-HIV agents, such as integrase inhibitors, possess favorable profiles with respect to CYP and UGT. We have discovered a novel HIV integrase inhibitor (compound 1) that exhibits low nM antiviral activity against a diverse set of HIV-1 isolates, and against HIV-2 and the simian immunodeficiency virus (SIV). Compound 1 displays low in vitro cytotoxicity and its resistance and related drug susceptibility profiles are favorable. Data from in vitro studies revealed that compound 1 was not a substrate for UGT isoforms and that it was not an inhibitor or activator of key CYP isozymes.
The novel HIV-1 integrase inhibitor 1, discovered in our laboratory, exhibits potent anti-HIV activity against a diverse set of HIV-1 isolates and also against HIV-2 and SIV. In addition, this compound displays low cellular cytotoxicity and possesses a favorable in vitro drug interaction profile with respect to isozymes of cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT). However, the total synthesis of this significant HIV integrase inhibitor has not been reported. This contribution describes an optimized, reproducible, multi-step, synthetic route to inhibitor 1. The yield for the separate steps averaged about 80%. The methodologies utilized in the synthesis were, among others, a palladium-catalyzed cross-coupling reaction, a crossed-Claisen condensation, and a hydrazino amide synthesis step. Successful alternative synthetic methodologies for some of the steps are also described.
While some examples are known of integrase inhibitors that exhibit potent anti-HIV activity, there are very few cases reported of integrase inhibitors that show significant differences in anti-HIV activity that result from distinctions in cis-and trans-configurations as well as enantiomeric stereostructure. We describe here the design and synthesis of two enantiomeric trans-hydroxycyclopentyl carboxamides which exhibit notable difference in anti-HIV activity. This difference is explained through their binding interactions within the active site of the HIV-1 integrase intasome. The more active enantiomer 3 (EC50 25 nM) was relatively stable in human liver microsomes. Kinetic data revealed that its impact on key cytochrome P450 isozymes, as either an inhibitor or an activator, was minor, suggesting a favorable CYP profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.