Plasma stratification has been studied for more than a century. Despite the many experimental studies reported on this topic, theoretical analyses and numerical modeling of this phenomenon have been mostly limited to rare gases. In this work, a one-dimensional fluid model with detailed kinetics of electrons and vibrationally excited molecules is employed to simulate moderate-pressure (i.e. a few Torrs) dc discharge in nitrogen in a 15.5 cm long tube of radius 0.55 cm. The model also considers ambipolar diffusion to account for the radial loss of ions and electrons to the wall. The proposed model predicts self-excited standing striations in nitrogen for a range of discharge currents. The impact of electron transport parameters and reaction rates obtained from a solution of local two-term and a multi-term Boltzmann equation on the predictions are assessed. In-depth kinetic analysis indicates that the striations result from the undulations in electron temperature caused due to the interaction between ionization and vibrational reactions. Furthermore, the vibrationally excited molecules associated with the lower energy levels are found to influence nitrogen plasma stratification and the striation pattern strongly. A balance between ionization processes and electron energy transport allows the formation of the observed standing striations. Simulations were conducted for a range of discharge current densities from ∼0.018 to 0.080 mA cm−2, for an operating pressure of 0.7 Torr. Parametric studies show that the striation length decreases with increasing discharge current. The predictions from the model are compared against experimental measurements and are found to agree favorably.
Pulsed dielectric barrier discharges (DBD) in He-H2O and He-H2O-O2 mixtures are studied in near atmospheric conditions using temporally and spatially resolved quantitative 2-D imaging of the hydroxyl radical (OH) and hydrogen peroxide (H2O2). The primary goal was to detect and quantify the production of these strongly oxidative species in water-laden helium discharges in a DBD jet configuration, which is of interest for biomedical applications such as disinfection of surfaces and treatment of biological samples. Hydroxyl profiles are obtained by laser-induced fluorescence (LIF) measurements using 282 nm laser excitation. Hydrogen peroxide profiles are measured by photo-fragmentation LIF (PF-LIF), which involves photo-dissociating H2O2 into OH with a 212.8 nm laser sheet and detecting the OH fragments by LIF. The H2O2 profiles are calibrated by measuring PF-LIF profiles in a reference mixture of He seeded with a known amount of H2O2. OH profiles are calibrated by measuring OH-radical decay times and comparing these with predictions from a chemical kinetics model. Two different burst discharge modes with 5 and 10 pulses per burst are studied, both with a burst repetition rate of 50 Hz. In both cases, dynamics of OH and H2O2 distributions in the afterglow of the discharge are investigated. Gas temperatures determined from the OH-LIF spectra indicate that gas heating due to the plasma is insignificant. The addition of 5% O2 in the He admixture decreases the OH densities and increases the H2O2 densities. The increased coupled energy in the 10-pulse discharge increases OH and H2O2 mole fractions, except for the H2O2 in the He-H2O-O2 mixture which is relatively insensitive to the additional pulses.
A methodology involving plasma optical emission spectroscopy driven by a direct current (dc) plasma source is developed to quantify water vapor concentration in a gaseous stream. The experimental setup consists of a dc driven low-pressure plasma cell in which the emission from the plasma discharge is measured by using an optical emission spectrometer. The emission from Hα at 656.2 nm—the first transition in the Balmer series, was found to be the most sensitive to the water vapor concentration in the gas stream. Consistent linear trends of the emission signals with respect to variation in concentration of water are observed for multiple combinations of operating parameters. This method has been applied to a vacuum drying process of a mock nuclear fuel assembly to quantify the concentration of water vapor during the drying process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.