A partly open vertical disk-cylinder system, with an annular top lid, is used to model numerically the characteristics of axisymmetric swirling flows with stagnation and associated flows reversal; commonly referred to as vortex breakdown. The flows are driven by the bottom disk uniform rotation and controlled by the competition between the no-slip and stress-free surface conditions applied at the top. Depending on the radial extent of the free surface, distinct regions of toroidal, corner and on-axis vortex type flows were identified and mapped into a state diagram then discussed. In addition, the impact of the cavity aspect ratio on the onset conditions of stagnation and breakdown was highlighted. Moreover, the study explored the influence of a diffusion driven meridian circulation, induced by the sidewall differential rotation, which is revealed to constitute an effective non intrusive kinematic means of flow control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.