The Fabaceae family is considered as a model system for understanding chloroplast genome evolution due to the presence of extensive structural rearrangements, gene losses and localized hypermutable regions. Here, we provide sequences of four chloroplast genomes from the Lupinus genus, belonging to the underinvestigated Genistoid clade. Notably, we found in Lupinus species the functional loss of the essential rps16 gene, which was most likely replaced by the nuclear rps16 gene that encodes chloroplast and mitochondrion targeted RPS16 proteins. To study the evolutionary fate of the rps16 gene, we explored all available plant chloroplast, mitochondrial and nuclear genomes. Whereas no plant mitochondrial genomes carry an rps16 gene, many plants still have a functional nuclear and chloroplast rps16 gene. Ka/Ks ratios revealed that both chloroplast and nuclear rps16 copies were under purifying selection. However, due to the dual targeting of the nuclear rps16 gene product and the absence of a mitochondrial copy, the chloroplast gene may be lost. We also performed comparative analyses of lupine plastomes (SNPs, indels and repeat elements), identified the most variable regions and examined their phylogenetic utility. The markers identified here will help to reveal the evolutionary history of lupines, Genistoids and closely related clades.
Population diversity and evolutionary relationships in the Hordeum murinum L. polyploid complex were explored in contrasted bioclimatic conditions from Algeria. A multidisciplinary approach based on morphological, cytogenetic, and molecular data was conducted on a large population sampling. Distribution of diploids (subsp. glaucum) and tetraploids (subsp. leporinum) revealed a strong correlation with a North-South aridity gradient. Most cytotypes exhibit regular meiosis with variable irregularities in some tetraploid populations. Morphological analyses indicate no differentiation among taxa but high variability correlated with bioclimatic parameters. Two and three different nuclear sequences (gene coding for an unspliced genomic protein kinase domain) were isolated in tetraploid and hexaploid cytotypes, respectively, among which one was identical with that found in the diploid subsp. glaucum. The tetraploids (subsp. leporinum and subsp. murinum) do not exhibit additivity for 5S and 45S rDNA loci comparative with the number observed in the related diploid (subsp. glaucum). The subgenomes in the tetraploid taxa could not be differentiated using genomic in situ hybridization (GISH). Results support an allotetraploid origin for subsp. leporinum and subsp. murinum that derives from the diploid subsp. glaucum and another unidentified diploid parent. The hexaploid (subsp. leporinum) has an allohexaploid origin involving the two genomes present in the allotetraploids and another unidentified third diploid progenitor.
This paper reports a cytogenetic study of eight Medicago L. species sampled from the Soummam Valley (northeastern Algeria). Chromosome numbers and meiosis irregularities during microsporogenesis were explored. Pollen viability rate and pollen size were also examined. The studied taxa are diploid and display biva-lent pairing and regular chromosome segregation during meiosis. Although meiosis appears regular, some anomalies were detected in relatively high cumulated rates (14.66%–26.14%). The most common meiotic abnormality examined here is related to cytomixis (from 14.66% in M. littoralis to 25.83% in M. laciniata). Other anomalies were also detected, including chromatic bridges, asynchronous divisions, micronuclei and multipolar cells. Consequently, the species exhibited varying percentages of pollen viability (from 70.11% in M. laciniata to 99.14% in M. littoralis). Pollen viability was negatively correlated with meiotic abnormalities (Pearson correlation coefficient R = −0.72, p = 0.043). The pollen grains were also heterogeneous in size. Medicago truncatula Gaertn. and M. laciniata (L.) Miller presented the most variable pollen size (relative standard deviation exceeding 19%). Medicago littoralis is distinguished from other species by possessing homogeneous and large sized pollen (relative standard deviation RSD = 6.73 %). The cytogenetic and pollen data provided by this study are discussed in the context of species systematics and in the perspective of genetic improvement.
We explored diversity, distribution and evolutionary dynamics of Ty1-Copia retrotransposons in the genomes of the Hordeum murinum polyploid complex and related taxa. Phylogenetic and fluorescent in situ hybridization (FISH) analyses of reverse transcriptase sequences identified four Copia families in these genomes: the predominant BARE1 (including three groups or subfamilies, A, B and C), and the less represented RIRE1, IKYA and TAR-1. Within the BARE1 family, BARE1-A elements and a subgroup of BARE1-B elements (named B1) have proliferated in the allopolyploid members of the H. murinum complex (H. murinum and H. leporinum), and in their extant diploid progenitor, subsp. glaucum. Moreover, we found a specific amplification of BARE1-B elements within each Hordeum species surveyed. The low occurrence of RIRE1, IKYA and TAR-1 elements in the allopolyploid cytotypes suggests that they are either weakly represented or highly degenerated in their diploid progenitors. The results demonstrate that BARE1-A and BARE1-B1 Copia elements are particularly well represented in the genomes of the H. murinum complex and constitute its genomic hallmark. No BARE1-A and -B1 homologs were detected in the reference barley genome. The similar distribution of RT-Copia probes across chromosomes of diploid, tetraploid and hexaploid taxa of the murinum complex shows no evidence of proliferation following polyploidization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.