In discussions on intestinal protection, the protective capacity of mucus has not been very much considered. The progress in the last years in understanding the molecular nature of mucins, the main building blocks of mucus, has, however, changed this. The intestinal enterocytes have their apical surfaces covered by transmembrane mucins and the whole intestinal surface is further covered by mucus, built around the gel-forming mucin MUC2. The mucus of the small intestine has only one layer, whereas the large intestine has a two-layered mucus where the inner, attached layer has a protective function for the intestine, as it is impermeable to the luminal bacteria.
The epithelial mucin MUC1 is a high molecular weight membrane glycoprotein frequently overexpressed and aberrantly glycosylated in adenocarcinoma. Mucins normally contain high amounts of O-linked carbohydrate structures that may influence immune reactions to this antigen. During malignant transformation, certain glyco-epitopes of MUC1, such as Tn-antigen, TF-antigen and their sialylated forms become exposed. The role of these glycan structures in tumor biology is unknown, but their presence is known to correlate with poor prognosis in several adenocarcinomas. We analyzed the potency of MUC1 containing Tn-antigens (MUC1-Tn) to target C-type lectins that function as carbohydrate recognition and uptake molecules on dendritic cells (DC). We identified the macrophage galactose type C-type lectin (MGL), expressed by both DC and macrophages, as the receptor for recognition and binding of MUC1-Tn. To validate the occurrence of MGL-MUC1 interactions in situ, we studied the binding of MGL to MUC1 in primary colon carcinoma tissue. Isolation of MUC1 out of colon carcinoma tissue showed strong binding activity to MGL. Interestingly, MGL binding to MUC1 was highly correlated to binding by the lectin Helix pomatia agglutinin (HPA), which is associated with poor prognosis in colorectal cancer. The detection of MGL positive cells in situ at the tumor site together with the modified glycosylation status of MUC1 to target MGL on DC suggests that MGL positive antigen presenting cells may play a role in tumor progression.
Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors via its B subunit (CTB). We have recently shown that in addition to the previously described binding partner ganglioside GM1, CTB binds to fucosylated proteins. Using flow cytometric analysis of primary human jejunal epithelial cells and granulocytes, we now show that CTB binding correlates with expression of the fucosylated Lewis X (LeX) glycan. This binding is competitively blocked by fucosylated oligosaccharides and fucose-binding lectins. CTB binds the LeX glycan in vitro when this moiety is linked to proteins but not to ceramides, and this binding can be blocked by mAb to LeX. Inhibition of glycosphingolipid synthesis or sialylation in GM1-deficient C6 rat glioma cells results in sensitization to CT-mediated intoxication. Finally, CT gavage produces an intact diarrheal response in knockout mice lacking GM1 even after additional reduction of glycosphingolipids. Hence our results show that CT can induce toxicity in the absence of GM1 and support a role for host glycoproteins in CT intoxication. These findings open up new avenues for therapies to block CT action and for design of detoxified enterotoxin-based adjuvants.
We have developed an expression system for the production of large quantities of recombinant MUC1 mucin in CHO-K1 (Chinese-hamster ovary K1) cells. The extracellular part of human MUC1, including 16 MUC1 tandem repeats, was produced as a fusion protein with murine IgG Fc, with an intervening enterokinase cleavage site for the removal of the Fc tail. Stable MUC1-IgG-producing CHO-K1 clones were generated and were found to secrete MUC1-IgG into the culture medium. After adaptation to suspension culture in protein-free medium in a bioreactor, the fusion protein was secreted in large quantities (100 mg/l per day) into the culture supernatant. From there, MUC1 could be purified to homogeneity using a two-step procedure including enterokinase cleavage and ion-exchange chromatography. Capillary liquid chromatography MS of released oligosaccharides from CHO-K1-produced MUC1 identified the main O-glycans as Galβ1-3GalNAc (core 1) and mono-and disialylated core 1. The glycans occupied on average 4.3 of the five potential O-glycosylation sites in the tandem repeats, as determined by nano-liquid chromatography MS of partially deglycosylated Clostripain-digested protein. A very similar O-glycan profile and site occupancy was found in MUC1-IgG produced in the breast carcinoma cell line T47D, which has O-glycosylation typical for breast cancer. In contrast, MUC1-IgG produced in another breast cancer cell line, MCF-7, showed a more complex pattern with both core 1-and core 2-based O-glycans. This is the first reported production of large quantities of recombinant MUC1 with a breast cancer-like O-glycosylation that could be used for the immunotherapy of breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.