BackgroundParkinson’s disease (PD) affects many physiological systems essential for balance control. Recent studies suggest that intensive and cognitively demanding physical exercise programs are capable of inducing plastic brain changes in PD. We have developed a highly challenging balance training (the HiBalance) program that emphasizes critical aspects of balance control through progressively introducing more challenging exercises which incorporates dual-tasking. Earlier studies have shown it to be effective in improving balance, gait and dual-tasking. The study design has thereafter been adjusted to link intervention-induced behavioral changes to brain morphology and function. Specifically, in this randomized controlled trial, we will determine the effects of the HiBalance program on balance, gait and cognition and relate this to task-evoked functional MRI (fMRI), as well as brain-derived neurotrophic factor (BDNF) in participants with mild-moderate PD.MethodsOne hundred participants with idiopathic PD, Hoehn & Yahr stage 2 or 3, ≥ 60 years of age, ≥ 21 on Montreal Cognitive Assessment will be recruited in successive waves and randomized into either the HiBalance program or to an active control group (the HiCommunication program, targeting speech and communication). Both interventions will be performed in small groups, twice a week with 1 h sessions for 10 weeks. In addition, a 1 h, once a week, home exercise program will also be performed. A double-blinded design will be used. At the pre- and post-assessments, participants will be assessed on balance (main outcome), gait, cognitive functions, physical activity, voice/speech function, BDNF in serum and fMRI (3 T Philips) during performance of motor-cognitive tasks.DiscussionSince there is currently no cure for PD, findings of neuroplastic brain changes in response to exercise would revolutionize the way we treat PD, and, in turn, provide new hope to patients for a life with better health, greater independence and improved quality of life.Trial registrationClincalTrials.gov: NCT03213873, first posted July 11, 2017.
Balance dysfunction is a disabling symptom in people with Parkinson’s disease (PD). Evidence suggests that exercise can improve balance performance and induce neuroplastic effects. We hypothesised that a 10-week balance intervention (HiBalance) would improve balance, other motor and cognitive symptoms, and alter task-evoked brain activity in people with PD. We performed a double-blind randomised controlled trial (RCT) where 95 participants with PD were randomised to either HiBalance (n = 48) or a control group (n = 47). We found no significant group by time effect on balance performance (b = 0.4 95% CI [−1, 1.9], p = 0.57) or on our secondary outcomes, including the measures of task-evoked brain activity. The findings of this well-powered, double-blind RCT contrast previous studies of the HiBalance programme but are congruent with other double-blind RCTs of physical exercise in PD. The divergent results raise important questions on how to optimise physical exercise interventions for people with PD.Preregistration clinicaltrials.gov: NCT03213873.
Background. Recent studies indicate that exercise can induce neuroplastic changes in people with Parkinson’s disease (PwPD). Reports of feasibility outcomes from existing pilot trials however are, of date, insufficient to enable replication by others in larger definitive trials. Objective. To evaluate trial design for a definitive trial by exploring process and scientific feasibility. Methods. The trial design was a parallel-group RCT pilot with a 1 : 1 allocation ratio to either HiBalance or an active control group (HiCommunication). Both groups received one-hour sessions twice weekly, plus home exercises weekly, for 10 weeks. Participants with mild-to-moderate Parkinson’s disease (PD) were recruited via advertisement. Assessment included physical performance, structural and functional MRI, blood sampling, neuropsychological assessment, and speech/voice assessment. Process and scientific feasibility were monitored throughout the study. Process feasibility involved recruitment, participant acceptability of assessments and interventions, assessment procedures (focus on imaging, blood sampling, and dual-task gait analysis), and blinding procedures. Scientific feasibility involved trends in outcome response and safety during group training and home exercises. Data are presented in median, minimum, and maximum values. Changes from pre- to postintervention are reported descriptively. Results. Thirteen participants were included (4 women, mean age 69.7 years), with a recruitment rate of 31%. Attendance rates and follow-up questionnaires indicated that both groups were acceptable to participate. Image quality was acceptable; however, diplopia and/or sleepiness were observed in several participants during MRI. With regard to dual-task gait performance, there appeared to be a ceiling effect of the cognitive tasks with seven participants scoring all correct answers at pretest. Blinding of group allocation was successful for one assessor but was broken for half of participants for the other. Conclusions. The overall trial design proved feasible to perform, but further strengthening ahead of the definitive RCT is recommended, specifically with respect to MRI setup, cognitive dual-tasks during gait, and blinding procedures. This trial is registered with NCT03213873.
Background: Parkinson’s disease (PD) is characterized by motor deficits and brain alterations having a detrimental impact on balance, gait, and cognition. Intensive physical exercise can induce changes in the neural system, potentially counteracting neurodegeneration in PD and improving clinical symptoms. Objective: This randomized controlled trial investigated effects of a highly challenging, cognitively demanding, balance and gait training (HiBalance) program in participants with PD on brain structure. Methods: 95 participants were assigned to either the HiBalance or an active control speech training program. The group-based interventions were performed in 1-hour sessions, twice per week over a 10-week period. Participants underwent balance, gait, cognitive function, and structural magnetic resonance imaging assessments before and after the interventions. Voxel-based morphometry was analyzed in 34 HiBalance and 31 active controls. Additionally, structural covariance networks were assessed. Results: There was no significant time by group interaction between the HiBalance and control training in balance, gait, or brain volume. Within-HiBalance-group analyses showed higher left putamen volumes post-training. In repeated measures correlation a positive linear, non-significant relationship between gait speed and putamen volume was revealed. In the HiBalance group we found community structure changes and stronger thalamic-cerebellar connectivity in structural covariance networks. Neither brain volume changes nor topology changes were found for the active controls after the training. Conclusion: Thus, subtle structural brain changes occur after balance and gait training. Future studies need to determine whether training modifications or other assessment methods lead to stronger effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.