whereas the MXD-chronology relates mainly to late summer warmth (July-September, r = 0.64, p < 0.001; 1899-2010). The chronologies show opposing patterns of decadal variability over the twentieth century (r = −0.68, p < 0.001) and confirm the importance of the summer North Atlantic Oscillation (sNAO) for summer climate in the northeastern Mediterranean, with positive sNAO phases inducing cold anomalies and enhanced cloudiness and precipitation. The combined reconstructions document the late twentieth-early twenty-first century warming and drying trend, but indicate generally drier early summer and cooler late summer conditions in the period ~1700-1900 CE. Our findings suggest a potential decoupling between twentieth century atmospheric circulation patterns and pre-industrial climate variability. Furthermore, the range of natural climate variability stretches beyond summer moisture availability observed in recent decades and thus lends credibility to the significant drying trends projected for this region in current Earth System Model simulations.
A technological development is described through which the stable carbon-, oxygen-, and nonexchangeable hydrogen-isotopic ratios (δ(13)C, δ(18)O, δ(2)H) are determined on a single carbohydrate (cellulose) sample with precision equivalent to conventional techniques (δ(13)C 0.15‰, δ(18)O 0.30‰, δ(2)H 3.0‰). This triple-isotope approach offers significant new research opportunities, most notably in physiology and medicine, isotope biogeochemistry, forensic science, and palaeoclimatology, when isotopic analysis of a common sample is desirable or when sample material is limited.
Abstract. Cellulose content (CC (%)) in tree rings is usually utilised as a tool to control the quality of the α-cellulose extraction from tree rings in the preparation of stable-isotope analysis in wooden tissues. Reported amounts of CC (%) are often limited to mean values per tree. For the first time, CC (%) series from two high-Alpine species, Larix decidua Mill. (European Larch, LADE) and Pinus cembra L. (Swiss stone pine, PICE) are investigated in modern wood samples and Holocene wood remains from the Early and midHolocene. Modern CC (%) series reveal a species-specific low-frequency trend independent of their sampling site over the past 150 years. Climate-cellulose relationships illustrate the ability of CC (%) to record temperature in both species but for slightly different periods within the growing season.The Holocene CC (%) series illustrate diverging lowfrequency trends in both species, independent of sampling site characteristics (latitude, longitude and elevation). Moreover, potential age trends are not apparent in the two coniferous species. The arithmetic mean of CC (%) series in the Early and mid-Holocene indicate low CC (%) succeeding cold events. In conclusion, CC (%) in tree rings show high potential to be established as novel supplementary proxy in dendroclimatology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.