Xanthomonas is a large genus of bacteria that collectively cause disease on more than 300 plant species. The broad host range of the genus contrasts with stringent host and tissue specificity for individual species and pathovars. Whole-genome sequences of Xanthomonas campestris pv. raphani strain 756C and X. oryzae pv. oryzicola strain BLS256, pathogens that infect the mesophyll tissue of the leading models for plant biology, Arabidopsis thaliana and rice, respectively, were determined and provided insight into the genetic determinants of host and tissue specificity. Comparisons were made with genomes of closely related strains that infect the vascular tissue of the same hosts and across a larger collection of complete Xanthomonas genomes. The results suggest a model in which complex sets of adaptations at the level of gene content account for host specificity and subtler adaptations at the level of amino acid or noncoding regulatory nucleotide sequence determine tissue specificity.The genus Xanthomonas is a member of the class Gammaproteobacteria and consists of 20 plant-associated species, many of which cause important diseases of crops and ornamentals. Individual species comprise multiple pathogenic variants (pathovars [pv.]). Collectively, members of the genus cause disease on at least 124 monocot species and 268 dicot species, including fruit and nut trees, solanaceous and brassicaceous plants, and cereals (32). They cause a variety of symptoms, including necrosis, cankers, spots, and blight, and they affect a variety of plant parts, including leaves, stems, and fruits (47). The broad host range of the genus contrasts strikingly with the * Corresponding author. Mailing address:
A two-genome microarray for the rice pathogens Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola and its use in the discovery of a difference in their regulation of hrp genes
AbstractBackground: Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) are bacterial pathogens of the worldwide staple and grass model, rice. Xoo and Xoc are closely related but Xoo invades rice vascular tissue to cause bacterial leaf blight, a serious disease of rice in many parts of the world, and Xoc colonizes the mesophyll parenchyma to cause bacterial leaf streak, a disease of emerging importance. Both pathogens depend on hrp genes for type III secretion to infect their host. We constructed a 50-70 mer oligonucleotide microarray based on available genome data for Xoo and Xoc and compared gene expression in Xoo strains PXO99 A and Xoc strain BLS256 grown in the rich medium PSB vs. XOM2, a minimal medium previously reported to induce hrp genes in Xoo strain T7174.
The rice XA21 pattern recognition receptor binds a type I secreted sulfated peptide, called axYS22, derived from the Ax21 (activator of XA21-mediated immunity) protein. The conservation of Ax21 in all sequenced Xanthomonas spp. and closely related genera suggests that Ax21 serves a key biological function. Here we show that the predicted N-terminal sequence of Ax21 is cleaved prior to secretion outside the cell and that mature Ax21 serves as a quorum sensing (QS) factor in Xanthomonas oryzae pv. oryzae. Ax21-mediated QS controls motility, biofilm formation and virulence. We provide genetic evidence that the Xoo RaxH histidine kinase serves as the bacterial receptor for Ax21. This work establishes a critical role for small protein-mediated QS in a Gram-negative bacterium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.