Natural dye sensitizers are environment-friendly and inexpensive substances that could be used for photocatalytic decontamination of organic pollutants. In this study, a natural dye extracted from mangosteen peel, containing a significant amount of anthocyanin dye, has been successfully employed to sensitize aeroxide TiO2 to lower its bandgap, thereby making the process visible sunlight-driven. We have demonstrated the photocatalytic activity of mangosteen dye-sensitized-TiO2 (MS-TiO2) under visible solar light by studying the degradation of methylene blue (MB), a well-studied model compound. A multivariate parametric study was performed using factorial design methodology with three factors—pH, MS-TiO2 dosage, and visible light intensity. The study indicated that pH and MS-TiO2 dosage are the two most dominant factors for MB degradation under visible solar light. The kinetic rate constant and adsorption equilibrium constant were determined, and a Langmuir-Hinshelwood-type equation was proposed to describe MB degradation on MS-TiO2 under visible solar light. Apparent quantum yield was also reported for the MS-TiO2 photocatalyst at optimum experimental conditions.
Optimization of the chemical pretreatment process prior to tertiary filtration of municipal secondary effluent was studied. Jar tests involving coagulation with alum, flocculation, settling and filtration were conducted on secondary effluent samples and these established the occurrence of two distinct coagulation mechanisms: the mechanism of charge neutralization, and the mechanism of sweep coagulation at different alum dosages and pH conditions. An optimum design region on the alum coagulation diagram also was established where the removals of various wastewater parameters were the highest. This region was bound by alum dosages of 55 to 60 mg/l and pH values of 6 to 6.5. In the above domain, the BOD5, TOC, turbidity, total-P, and the orthophosphate levels of the secondary effluent were reduced by 73%, 57%, 98%, and 99% respectively after tertiary filtration. Particle size analysis of the settled and filtered effluent also was conducted in both the charge neutralization and the sweep coagulation zones. A wide difference was observed in particle sizes between the effluents after settling and after filtration in the charge neutralization zone. In comparison, the difference in particle size between the settled and the filtered effluents was smaller in the sweep coagulation zone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.