The neonatal Fc receptor (FcRn) binds maternal immunoglobulin G (IgG) from ingested milk in the gut (pH 6.0-6.5) and delivers it to the bloodstream of the newborn (pH 7.0-7.5). A soluble version of FcRn reproduces the physiological pH-dependent interaction with IgG, showing high-affinity binding at pH 6.0-6.5 but weak or no binding at pH 7.0-7.5. We have studied the pH dependence of the FcRn/IgG interaction using a surface plasmon resonance assay to measure kinetic and equilibrium constants. We show that the affinity of FcRn for IgG is reduced about 2 orders of magnitude as the pH is raised from 6.0 to 7.0. A hill put analysis suggests that several titrating residues participate in the pH-dependent affinity transition. Histidine side chains are likely candidate for residues that titrate between pH 6.0 and 7.0, and previous biochemical and structural work identified several histidines on the Fc portion of IgG that are located at the FcRn binding site. Using mutant IgG molecules and IgG subtype variants that differ in the number of histidines at the IgG/FcRn interface, we demonstrate that IgG histidines located at the junction between the CH2 and CH3 domains (residues 310 and 433) contribute to the pH-dependent affinity transition. Experiments with a mutant FcRn molecule show that two histidines on the FcRn heavy chain (residues 250 and 251) also contribute to the pH dependence of the FcRn/IgG interaction. There results are interpreted using the crystal structures of FcRn and an FcRn/Fc complex.
Receptors for the Fc domain of immunoglobulins play an important role in immune defense. There are two well-defined functional classes of mammalian receptors. One class of receptors transports immunoglobulins across epithelial tissues to their main sites of action. This class includes the neonatal Fc receptor (FcRn), which transports immunoglobulin G (IgG), and the polymeric immunoglobulin receptor (pIgR), which transports immunoglobulin A (IgA) and immunoglobulin M (IgM). Another class of receptors present on the surfaces of effector cells triggers various biological responses upon binding antibody-antigen complexes. Of these, the IgG receptors (Fcγ R) and immunoglobulin E (IgE) receptors (Fc R) are the best characterized. The biological responses elicited include antibody-dependent, cell-mediated cytotoxicity, phagocytosis, release of inflammatory mediators, and regulation of lymphocyte proliferation and differentiation. We summarize the current knowledge of the structures and functions of FcRn, pIgR, and the Fcγ R and Fc RI proteins, concentrating on the interactions of the extracellular portions of these receptors with immunoglobulins.
Major histocompatibility complex (MHC) class I polymorphisms are known to influence outcomes in a number of infectious diseases, cancers and inflammatory diseases. Human MHC class I heavy chains are encoded by the HLA-A, HLA-B and HLA-C genes. These genes are highly polymorphic, with the HLA-B locus being the most variable. Each HLA class I protein binds to distinct set of peptide antigens, which are presented to CD8+ T cells. HLA-disease associations have been shown in some cases to link to the peptide binding characteristics of individual HLA class I molecules. Here we show that polymorphisms at the HLA-B locus profoundly influence the assembly characteristics of HLA-B molecules and the stabilities of their peptide-deficient forms. In particular, dependence on the assembly factor tapasin is highly variable, with frequent occurrence of strongly tapasin-dependent or independent allotypes. Several polymorphic HLA-B residues located near the C-terminal end of the peptide are key determinants of tapasin-independent assembly. In vitro refolded forms of tapasin-independent allotypes assemble more readily with peptides compared to tapasin-dependent allotypes that belong to the same supertype, and during refolding, reduced aggregation of tapasin-independent allotypes is observed. Paradoxically, in HIV-infected individuals, greater tapasin-independent HLA-B assembly confers more rapid progression to death, consistent with previous findings that some HLA-B allotypes shown to be tapasin-independent are associated with rapid progression to multiple AIDS outcomes. Together, these findings demonstrate significant variations in the assembly of HLA-B molecules, and indicate influences of HLA-B folding patterns upon infectious disease outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.