Insulin is known to regulate adipocyte differentiation and lipid accumulation, but the specific mechanism by which precursor cells differentiate into adipocytes is not clearly understood. This study evaluated the role of the IGF-I receptor in the process of adipocyte differentiation in bone marrow-derived human mesenchymal stem cells (HMSCs). The results demonstrated that nanomolar concentrations of IGF-I adequately replaced micromolar concentrations of insulin in supporting differentiation and lipid accumulation in HMSCs. The addition of IGF-I specifically increased cell proliferation and lipid accumulation in HMSCs, but a mixture of differentiation factors including dexamethasone, indomethacin, and 3-isobutyl-1-methylxanthine did not. These effects were blocked by the alphaIR-3 antibody, which inhibits IGF-I receptor activity. We also describe the pattern of differentiation with regard to cell growth, lipid accumulation, and morphologic changes and define the changes in these parameters that are influenced by IGF-I. Finally, peroxisome proliferator activating receptor-gamma immunoreactivity was also increased in response to IGF-I, and this effect was blocked in cells treated with the alphaIR-3 antibody. Taken together, these findings suggest that IGF-I plays a critical role in adipocyte differentiation and lipid accumulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.