The retinal pigment epithelium (RPE) is consistently exposed to high levels of pro-oxidant and inflammatory stimuli. As such, under normal conditions the antioxidant machinery in the RPE cell is one of the most efficient in the entire body. However, antioxidant defense mechanisms are often impacted negatively by the process of aging and/or degenerative disease leaving RPE susceptible to damage which contributes to retinal dysfunction. Thus, understanding better the mechanisms governing antioxidant responses in RPE is critically important. Here, we evaluated the role of the redox sensitive microRNA miR-144 in regulation of antioxidant signaling in human and mouse RPE. In cultured human RPE, miR-144-3p and miR-144-5p expression was upregulated in response to pro-oxidant stimuli. Likewise, overexpression of miR-144-3p and -5p using targeted miR mimics was associated with reduced expression of Nrf2 and downstream antioxidant target genes (NQO1 and GCLC), reduced levels of glutathione and increased RPE cell death. Alternately, some protection was conferred against the above when miR-144-3p and miR-144-5p expression was suppressed using antagomirs. Expression analyses revealed a higher conservation of miR-144-3p expression across species and additionally, the presence of two potential Nrf2 binding sites in the 3p sequence compared to only one in the 5p sequence. Thus, we evaluated the impact of miR-144-3p expression in the retinas of mice in which a robust pro-oxidant environment was generated using sodium iodate (SI). Subretinal injection of miR-144-3p antagomir in SI mice preserved retinal integrity and function, decreased oxidative stress, limited apoptosis and enhanced antioxidant gene expression. Collectively, the present work establishes miR-144 as a potential target for preventing and treating degenerative retinal diseases in which oxidative stress is paramount and RPE is prominently affected (e.g., age-related macular degeneration and diabetic retinopathy).
Retinal pigment epithelium (RPE) performs numerous functions critical to retinal health and visual function. RPE senescence is a hallmark of aging and degenerative retinal disease development. Here, we evaluated the temporal expression of key nicotinamide adenine dinucleotide (NAD+)-biosynthetic genes and associated levels of NAD+, a principal regulator of energy metabolism and cellular fate, in mouse RPE. NAD+ levels declined with age and correlated directly with decreased nicotinamide phosphoribosyltransferase (NAMPT) expression, increased expression of senescence markers (p16INK4a, p21Waf/Cip1, ApoJ, CTGF and β-galactosidase) and significant reductions in SIRT1 expression and activity. We simulated in vitro the age-dependent decline in NAD+ and the related increase in RPE senescence in human (ARPE-19) and mouse primary RPE using the NAMPT inhibitor FK866 and demonstrated the positive impact of NAD+-enhancing therapies on RPE cell viability. This, we confirmed in vivo in the RPE of mice injected sub-retinally with FK866 in the presence or absence of nicotinamide mononucleotide. Our data confirm the importance of NAD+ to RPE cell biology normally and in aging and demonstrate the potential utility of therapies targeting NAMPT and NAD+ biosynthesis to prevent or alleviate consequences of RPE senescence in aging and/or degenerative retinal diseases in which RPE dysfunction is a crucial element.
GPR109A agonists have been used for the treatment of obesity however, the role of GPR109A in regulating aging-associated alterations in lipid metabolism is unknown. In this study we used Gpr109a-/- mice to investigate the effect of aging in the regulation of lipid accumulation. We observed that in mouse and human livers, in addition to Kupffer cells, GPR109A is expressed in hepatocytes. Over 12 months, compared to wild type (WT), Gpr109a-/- mice gained significantly more weight. Food intake and levels of serum lipids were similar among both groups. Compared to age-matched WT mice, 12-months old Gpr109a-/- mice had significantly increased liver weight, hepatic steatosis and serum markers of liver injury. The fatty liver phenotype in Gpr109a-/- mice was associated with increased hepatic expression of lipogenesis genes and decreased expression of lipolysis genes. Gpr109a-/- mice had significantly increased fat tissues, which was associated with significant increase in adipocyte diameter and surface area. Adipose tissue from Gpr109a-/- mice had increased expression of lipogenesis genes; however, expression of lipolytic genes was similar in both groups. Collectively, these results indicate that during aging, GPR109A modulates de novo lipid accumulation in liver and adipose tissue, and its dysregulation can lead to age-associated obesity and hepatic steatosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.