Background: Inflammation plays a vital role in the pathogenesis of chronic non-communicable diseases (NCDs), the leading health issue worldwide. An earlier study reported that tocotrienol-rich fraction (TRF) showed better anti-inflammation effects in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Aim: This study aimed to investigate the anti-inflammatory effects of tocotrienol-rich fraction at the molecular level by looking at the genes that were differentially regulated and pathways affected in LPS-stimulated macrophages exposed to TRF using the microarray approach. Methods: A microarray study was carried out in LPS-stimulated RAW 264.7 macrophages. Total ribonucleic acid (RNA) was extracted from the RAW 264.7 cells treated with TRF (10µg/mL), alpha-tocopherol (10 µg/mL) or LPS (10 ng/mL). Untreated cells served as control. Enrichment analyses, such as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG), were conducted for genes listed in the differentially expressed genes (DEGs). Results: The microarray analysis showed that the expression of five genes [Hamp, Interleukin-1a (IL-1a), IL-b, C-X-C motif chemokine ligand 2 (CXCL2) and colony-stimulating factor 3 (CSF3)] and one gene (SLC1A4), an amino acid transporter, was modulated (fold change 2, P< 0.05) in the TRF-treated cells. With a more stringent analysis (fold change 3, P < 0.05), only one gene (CSF3) was downregulated in the TRF-treated in RAW 264.7 cells. Analysis using the GO and KEGG pathways revealed interactions between pro-inflammatory agents such as tumor necrosis factor-alpha (TNFα) and nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-B), as well as signaling pathways of interleukin (IL)-1 and IL-17. Conclusion: TRF modulated the expression of genes responsible for acute and chronic inflammation that were part of the lipoxygenase (LOX) and cyclooxygenase (COX) inflammatory pathways. Further investigation on the effects of TRF in different cell lines and in vivo studies should be conducted in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.