Floral nectar is regarded as the most important reward available to animal-pollinated plants to attract pollinators. Despite the vast amount of publications on nectar properties, the role of nectar as a natural bacterial habitat is yet unexplored. To gain a better understanding of bacterial communities inhabiting floral nectar, culture-dependent and -independent (454-pyrosequencing) methods were used. Our findings demonstrate that bacterial communities in nectar are abundant and diverse. Using culture-dependent method we showed that bacterial communities of nectar displayed significant variation among three plant species: Amygdalus communis, Citrus paradisi and Nicotiana glauca. The dominant class in the nectar bacterial communities was Gammaproteobacteria. About half of the isolates were novel species (< 97% similarities of the 16S rRNA gene with known species). Using 454-pyrosequencing we demonstrated that nectar microbial community are distinct for each of the plant species while there are no significant differences between nectar microbial communities within nectars taken from different plants of the same species. Primary selection of the nectar bacteria is unclear; it may be affected by variations in the chemical composition of the nectar in each plant. The role of the rich and diverse nectar microflora in the attraction-repulsion relationships between the plant and its nectar consumers has yet to be explored.
During cold storage after milk collection, psychrotrophic bacterial populations dominate the microflora, and their extracellular enzymes, mainly proteases and lipases, contribute to the spoilage of dairy products. The diversity, dynamics, and enzymatic traits of culturable psychrotrophs in raw milk from four farms were investigated over a 10-month period. About 20% of the isolates were found to be novel species, indicating that there is still much to be learned about culturable psychrotrophs in raw milk. The psychrotrophic isolates were identified and classified in seven classes. Three classes were predominant, with high species richness (18 to 21 species per class) in different seasons of the year: Gammaproteobacteria in spring and winter, Bacilli in summer, and Actinobacteria in autumn. The four minor classes were Alphaproteobacteria, Betaproteobacteria, Flavobacteria, and Sphingobacteria. The dominant classes were found in all four dairies, although every dairy had its own unique "bacterial profile." Most but not all bacterial isolates had either lipolytic or both lipolytic and proteolytic activities. Only a few isolates showed proteolytic activity alone. The dominant genera, Pseudomonas and Acinetobacter (Gammaproteobacteria), showed mainly lipolytic activity, Microbacterium (Actinobacteria) was highly lipolytic and proteolytic, and the lactic acid bacteria (Lactococcus and Leuconostoc) displayed very minor enzymatic ability. Hence, the composition of psychrotrophic bacterial flora in raw milk has an important role in the determination of milk quality. Monitoring the dominant psychrotrophic species responsible for the production of heat-stable proteolytic and lipolytic enzymes offers a sensitive and efficient tool for maintaining better milk quality in the milk industry.
Vibrio cholerae, the etiologic agent of cholera, is autochthonous to various aquatic environments, but despite intensive efforts its ecology remains an enigma. Recently, it was suggested that copepods and chironomids, both considered as natural reservoirs of V. cholerae, are dispersed by migratory waterbirds, thus possibly distributing the bacteria between water bodies within and between continents. Although fish have been implicated in the scientific literature with cholera cases, as far as we know, no study actually surveyed the presence of the bacteria in the fish. Here we show for the first time that fish of various species and habitats contain V. cholerae in their digestive tract. Fish (n = 110) were randomly sampled from freshwater and marine habitats in Israel. Ten different fish species sampled from freshwater habitats (lake, rivers and fish ponds), and one marine species, were found to carry V. cholerae. The fish intestine of Sarotherodon galilaeus harboured ca. 5×103 V. cholerae cfu per 1 gr intestine content—high rates compared with known V. cholerae cfu numbers in the bacteria's natural reservoirs. Our results, combined with evidence from the literature, suggest that fish are reservoirs of V. cholerae. As fish carrying the bacteria swim from one location to another (some fish species move from rivers to lakes or sea and vice versa), they serve as vectors on a small scale. Nevertheless, fish are consumed by waterbirds, which disseminate the bacteria on a global scale. Moreover, V. cholerae isolates had the ability to degrade chitin, indicating a commensal relationship between V. cholerae and fish. Better understanding of V. cholerae ecology can help reduce the times that human beings come into contact with this pathogen and thus minimize the health risk this poses.
regions of Israel and were able to isolate V. cholerae from all of these samples.We inoculated fresh egg masses in a saltsolution medium with 1 ǂ10 3 V. cholerae per ml. Two controls were run concurrently: egg masses incubated alone under the same conditions, and medium without egg masses inoculated with 1 ǂ10 3 per ml V. cholerae. We determined growth of V. cholerae after 24 h by plating samples on thiosulphate-citrate-bile salt substrate.The number of bacterial colony-forming units (CFUs) that developed in the first control was always less than 0.1% of that recovered in the treated samples; CFUs recovered in the second control did not change. In the medium containing egg masses as the sole carbon source, V. cholerae reached 2 ǂ10 6 CFU ml ǁ1 . Similar results were obtained when sterilized egg masses were provided as a carbon source. These findings show that egg masses can provide a carbon source to support the development and multiplication of V. cholerae.Although the V. cholerae biotypes isolated here are non-pathogenic, it is likely that chironomid egg masses would also be a suitable (and abundant) substrate for the pathogenic V. cholerae O1 and O139, assuming that the microhabitat of the pathogenic biotypes is similar 4 .An association has been noted between both viable and 'viable but non-culturable' V. cholerae and zooplankton, and copepods have been implicated in the spread of cholera 5,6 . Propagules may be carried by marine zooplankton along the continental seashore, aided by climatic events such as the El Niño Southern Oscillation 7-9 . These results are relevant to the dispersion of pandemics and to the autochthonous existence of V. cholerae in endemic locales during periods between epidemics -when there is local build-up of the bacterium but no outbreak of disease. Our findings indicate that chironomid egg masses may serve as an intermediate 'host' reservoir for V. cholerae, facilitating its survival and multiplication in freshwater bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.