Classical genetic approaches useful with free-living bacteria are difficult to apply to the rickettsiae. Although rickettsial mutants have been isolated over the years, the genetic basis of these mutants is unknown, limiting their usefulness. The application of molecular biological techniques to rickettsial studies has provided the opportunity to isolate and study specific genes. Genes encoding metabolic enzymes from rickettsiae were cloned in Escherichia coli and shown to retain their regulatory properties, suggesting that recombinant DNA technology may be useful for studies of rickettsial enzymes and regulatory mechanisms. The potential use of rickettsial surface components, or virulence factors as possible antigens for protective subunit vaccines, has led to the cloning and expression in E. coli, of rickettsial chromosomal and plasmid genes encoding outer membrane proteins. The number of genes characterized in recent years has increased dramatically giving rise to an increasing source of information on rickettsial gene structure. Plasmids have only been identified in C. burnetii and possibly Rochalimaea quintana. The plasmid sequences present in C. burnetii are highly conserved suggesting that they are important to the growth and virulence of this organism. To understand the role of genes in the rickettsia-host relationship, it is critical that a genetic exchange system be developed. The recent description of transformation of R. quintana by electroporation is an important first step in this direction. The ability to introduce genetic material is necessary to address questions that cannot be resolved by studying rickettsial gene expression in E. coli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.