We report the development of a polyethylene glycol (PEG) hydrogel scaffold that provides the advantages of conventional bulk PEG hydrogels for engineering cellular microenvironments and allows for rapid cell migration.
Dynamic-covalent chemistry has enabled the facile synthesis of a new generation of degradable materials, but controlling the rate at which these materials degrade remains elusive. Using segmented hyperbranched polymers (SHPs) as model branched architectures, we demonstrate that SHPs containing imine crosslinks degrade under acidic conditions into well-defined linear chains at rates controllable via modification of the imine N-substituent. Imine-cross-linked SHPs were synthesized in a one-pot protocol by reversible addition−fragmentation chain transfer (RAFT) copolymerization of novel divinyl compounds containing dynamiccovalent oxime, semicarbazone, and acyl hydrazone moieties. The extent of SHP branching could be controlled through the relative stoichiometric ratios of crosslinker and chain transfer agent (CTA), and studies of the polymerization kinetics confirmed the growth of polydisperse branched species at high monomer conversions. When subjected to aqueous acidic conditions, the polydisperse branched architecture degraded into well-defined polymers, a process that was accelerated under more strongly acidic conditions and by incorporating less hydrolytically stable imine cross-links. Finally, we found that the rate of SHP degradation could be tuned with an unprecedented level of control by cross-linking the polymers with different proportions of multiple imines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.