Development of an efficient intraocular drug delivery nanosystem remains the most difficult challenge to attain a prolonged therapeutic effect at the site of drug action. The purpose of this work was to develop a biodegradable, long-term sustained release, and biocompatible nanoparticulate system to treat various intraocular diseases. To attain the objectives, poly(ortho ester) (POE), a hydrophobic, surface erodible, and nontoxic polymer, was selected for fabrication of nanoparticles for the first time using a double emulsion solvent evaporation method. The influence of POE molecular weight on particle size, polydispersity index, zeta potential, drug content, in vitro release, degradation, in vitro cytotoxicity, and cell uptake studies was investigated. Drug-loaded nanoparticles had a spherical shape with an average particle diameter from 241 to 298 nm and zeta potential values from -8 to -11 mV. Encapsulation efficiency ranged between 21 and 63%, depending on the type of the water-soluble molecule used. Approximately 20-30% of the loaded drug was released over a period of 14 weeks. The drug release and degradation profiles of nanoparticles followed perfect zero-order kinetics confirming the POE-surface erosion mechanism. In vitro cytotoxicity and cell uptake studies revealed the cyto-compatible nature and nonendocytic behavior of POE nanoparticles. Collectively, POE nanoparticles are a very promising vehicle for sustained delivery of therapeutics to the back of the eye.
Atrophic age‐related macular degeneration (AMD) is the most common type of AMD, yet there is no United States Food and Drug Administration (FDA)‐approved therapy. This disease is characterized by retinal pigment epithelial (RPE) insufficiency, primarily in the macula, which affects the structure and physiology of photoreceptors and ultimately, visual function. In this study, we evaluated the protective effects of a naturally derived small molecule glycan therapeutic—asialo‐, tri‐antennary complex‐type N‐glycan (NA3)—in two distinct preclinical models of atrophic AMD. In RPE‐deprived Xenopus laevis tadpole eyes, NA3 supported normal retinal ultrastructure. In RCS rats, NA3 supported fully functioning visual integrity. Furthermore, structural analyses revealed that NA3 prevented photoreceptor outer segment degeneration, pyknosis of the outer nuclear layer, and reactive gliosis of Müller cells (MCs). It also promoted maturation of adherens junctions between MC and photoreceptors. Our results demonstrate the neuroprotective effects of a naturally derived small molecular glycan therapeutic—NA3—in two unique preclinical models with RPE insufficiency. These data suggest that NA3 glycan therapy may provide a new therapeutic avenue in the prevention and/or treatment of retinal diseases such as atrophic AMD.
Treatment of posterior eye diseases is more challenging than the anterior segment ailments due to a series of anatomical barriers and physiological constraints confronted by drug delivery to the back of the eye. In recent years, concerted efforts in drug delivery have been made to prolong the residence time of drugs injected in the vitreous humor of the eye. Our previous studies demonstrated that poly(ortho ester) (POE) nanoparticles were biodegradable/biocompatible and were capable of long-term sustained release. The objective of the present study was to investigate the safety and localization of POE nanoparticles in New Zealand white rabbits and C57BL/6 mice after intravitreal administration for the treatment of chronic posterior ocular diseases. Two concentration levels of POE nanoparticles solution were chosen for intravitreal injection: 1.5 mg/ml and 10 mg/ml. Our results demonstrate that POE nanoparticles were distributed throughout the vitreous cavity by optical coherence tomography (OCT) examination 14 days post-intravitreal injection. Intraocular pressure was not changed from baseline. Inflammatory or adverse effects were undetectable by slit lamp biomicroscopy. Furthermore, we demonstrate that POE nanoparticles have negligible toxicity assessed at the cellular level evidenced by a lack of glia activation or apoptosis estimation after intravitreal injection. Collectively, POE nanoparticles are a novel and nontoxic as an ocular drug delivery system for the treatment of posterior ocular diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.