Inositol-requiring transmembrane kinase endoribonuclease-1α (IRE1α) is the most prominent and evolutionarily conserved unfolded protein response (UPR) signal transducer during endoplasmic reticulum functional upset (ER stress). A IRE1α signal pathway arbitrates yin and yang of cellular fate in objectionable conditions. It plays several roles in fundamental cellular physiology as well as in several pathological conditions such as diabetes, obesity, inflammation, cancer, neurodegeneration, and in many other diseases. Thus, further understanding of its molecular structure and mechanism of action during different cell insults helps in designing and developing better therapeutic strategies for the above-mentioned chronic diseases. In this review, recent insights into structure and mechanism of activation of IRE1α along with its complex regulating network were discussed in relation to their basic cellular physiological function. Addressing different binding partners that can modulate IRE1α function, UPRosome triggers different downstream pathways depending on the cellular backdrop. Furthermore, IRE1α are in normal cell activities outside the dominion of ER stress and activities under the weather of inflammation, diabetes, and obesity-related metaflammation. Thus, IRE1 as an ER stress sensor needs to be understood from a wider perspective for comprehensive functional meaning, which facilitates us with assembling future needs and therapeutic benefits.
Xerostomia is a state of oral dryness associated with salivary gland dysfunction and is induced by stress, radiation and chemical therapy, various systemic and autoimmune diseases, and specific medications. Fluid secretion is interrupted by the stimulation of neurotransmitter-induced increase in cytosolic calcium ([Ca]) in salivary gland acinar cells, prompting the mobilization of ion channels and their transporters. Salivary fluid and protein secretion are principally dependent on parasympathetic and sympathetic nerves. Various inflammatory cytokines allied with lymphocytic infiltration cause glandular damage and Sjogren's syndrome, an autoimmune exocrinopathy associated with hyposalivation. A defect in IPRs, a major calcium release channel, prompts inadequate agonist-induced [Ca] in acinar cells and deters salivary flow. The store-operated calcium entry-mediated Ca movement into the acini activates K and Cl channels, which further opens a water channel protein, aquaporin-5, and triggers the release of fluid secretion from the salivary glands. The cellular mechanism of salivary gland dysfunction and hyposalivation has not yet been elucidated. In this review, we focused mainly on the proteins responsible for deficient saliva, the correlation between inflammation and salivation, autoimmune disorders and other ailments or complications associated with hyposalivation.
Hyperactivation of phosphoinositol 3-kinase (PI3K) has been suggested to be a potential mechanism for endoplasmic reticulum (ER) stress-enhanced airway hyperresponsiveness, and PI3K inhibitors have been examined as asthma therapeutics. However, the regulatory mechanism linking PI3K to ER stress and related pathological signals in asthma have not been defined. To elucidate these pathogenic pathways, we investigated the influence of a selective PI3Kδ inhibitor, IC87114, on airway inflammation in an ovalbumin/lipopolysaccharide (OVA/LPS)-induced asthma model. In OVA/LPS-induced asthmatic mice, the activity of PI3K, downstream phosphorylation of AKT and activation of nuclear factor-κB (NF-κB) were all significantly elevated; these effects were reversed by IC87114. IC87114 treatment also reduced the OVA/LPS-induced ER stress response by enhancing the intra-ER oxidative folding status through suppression of protein disulfide isomerase activity, ER-associated reactive oxygen species (ROS) accumulation and NOX4 activity. Furthermore, inositol-requiring enzyme-1α (IRE1α)-dependent degradation (RIDD) of IRE1α was reduced by IC87114, resulting in a decreased release of proinflammatory cytokines from bronchial epithelial cells. These results suggest that PI3Kδ may induce severe airway inflammation and hyperresponsiveness by activating NF-κB signaling through ER-associated ROS and RIDD–RIG-I activation. The PI3Kδ inhibitor IC87114 is a potential therapeutic agent against neutrophil-dominant asthma.
Background Reports on metastatic or invasive infections by hypervirulent Klebsiella pneumoniae (hvKP) have increased recently. However, the effects of its virulence on clinical course and outcomes in pneumonia patients have rarely been addressed. We assessed and compared the clinical features of hvKp and classic K. pneumoniae (cKP) strains isolated from patients with pneumonia caused by K. pneumoniae . We also investigated the effects of virulence factors and the K. pneumoniae capsular serotypes K1 and K2 on mortality. Methods In this retrospective study, we enrolled 91 patients diagnosed as having pneumonia caused by K. pneumoniae and obtained their demographic and clinical data from medical records. We evaluated genes for K1 and K2, antimicrobial susceptibility, and the virulence genes rmpA, iutA, entB, ybtS, kfu, mrkD , and allS . Strains that possessed rmpA and iutA were defined as hvKP (N=39), while the remaining were classified as cKP (N=52). Odds ratio (OR) for the risk factors associated with 30-day mortality was calculated using the binary logistic regression model. Results The 30-day mortality in all patients was 23.1%; it was 17.9% (7/39) in the hvKP group and 26.9% (14/52) in the cKP group ( P =0.315). Bacteremia (OR=38.1; 95% confidence interval [CI], 2.5–570.2), altered mental status (OR=8.8; 95% CI, 1.7–45.0), and respiratory rate >30 breaths/min (OR=4.8; 95% CI, 1.2–20.0) were independent risk factors for 30-day mortality in all patients. Conclusions Our results suggest that hypervirulence determinants do not have a significant effect on 30-day mortality in patients with pneumonia caused by K. pneumoniae .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.