Recently Chloroquine and its derivative Hydroxychloroquine have garnered enormous interest amongst the clinicians and health authorities’ world over as a potential treatment to contain COVID-19 pandemic. The present research aims at investigating the therapeutic potential of Chloroquine and its potent derivative Hydroxychloroquine against SARS-CoV-2 viral proteins. At the same time we have screened some chemically synthesized derivatives of Chloroquine and compared their binding efficacy with chemically synthesized Chloroquine derivatives through <i>in silico</i>approaches. For the purpose of the study, we have selected some essential viral proteins and enzymes implicated in SARS-CoV-2 replication and multiplication as putative drug targets.<br>
Recently Chloroquine and its derivative Hydroxychloroquine have garnered enormous interest amongst the clinicians and health authorities’ world over as a potential treatment to contain COVID-19 pandemic. The present research aims at investigating the therapeutic potential of Chloroquine and its potent derivative Hydroxychloroquine against SARS-CoV-2 viral proteins. At the same time we have screened some chemically synthesized derivatives of Chloroquine and compared their binding efficacy with chemically synthesized Chloroquine derivatives through <i>in silico</i>approaches. For the purpose of the study, we have selected some essential viral proteins and enzymes implicated in SARS-CoV-2 replication and multiplication as putative drug targets.<br>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.