BackgroundThe three-dimensional shape of grain, measured as grain length, width, and thickness (GL, GW, and GT), is one of the most important components of grain appearance in rice. Determining the genetic basis of variations in grain shape could facilitate efficient improvements in grain appearance. In this study, an F7:8 recombinant inbred line population (RIL) derived from a cross between indica and japonica cultivars (Nanyangzhan and Chuan7) contrasting in grain size was used for quantitative trait locus (QTL) mapping. A genetic linkage map was constructed with 164 simple sequence repeat (SSR) markers. The major aim of this study was to detect a QTL for grain shape and to fine map a minor QTL, qGL7.ResultsFour QTLs for GL were detected on chromosomes 3 and 7, and 10 QTLs for GW and 9 QTLs for GT were identified on chromosomes 2, 3, 5, 7, 9 and 10, respectively. A total of 28 QTLs were identified, of which several are reported for the first time; four major QTLs and six minor QTLs for grain shape were also commonly detected in both years. The minor QTL, qGL7, exhibited pleiotropic effects on GL, GW, GT, 1000-grain weight (TGW), and spikelets per panicle (SPP) and was further validated in a near isogenic F2 population (NIL-F2). Finally, qGL7 was narrowed down to an interval between InDel marker RID711 and SSR marker RM6389, covering a 258-kb region in the Nipponbare genome, and cosegregated with InDel markers RID710 and RID76.ConclusionMaterials with very different phenotypes were used to develop mapping populations to detect QTLs because of their complex genetic background. Progeny tests proved that the minor QTL, qGL7, could display a single mendelian characteristic. Therefore, we suggested that minor QTLs for traits with high heritability could be isolated using a map-based cloning strategy in a large NIL-F2 population. In addition, combinations of different QTLs produced diverse grain shapes, which provide the ability to breed more varieties of rice to satisfy consumer preferences.
This study identified four and five quantitative trait loci (QTLs) for 1,000-grain weight (TGW) and spikelets per panicle (SPP), respectively, using rice recombinant inbred lines. QTLs for the two traits (SPP3a and TGW3a, TGW3b and SPP3b) were simultaneously identified in the two intervals between RM3400 and RM3646 and RM3436 and RM5995 on chromosome 3. To validate QTLs in the interval between RM3436 and RM5995, a BC(3)F(2) population was obtained, in which TGW3b and SPP3b were simultaneously mapped to a 2.6-cM interval between RM15885 and W3D16. TGW3b explained 50.4% of the phenotypic variance with an additive effect of 1.81 g. SPP3b explained 29.1% of the phenotypic variance with an additive effect of 11.89 spikelets. The interval had no effect on grain yield because it increased SPP but decreased TGW and vice versa. Grain shape was strongly associated with TGW and was used for QTL analysis in the BC(3)F(2) population. Grain length, grain width, and grain thickness were also largely controlled by TGW3b. At present, it is not clear whether one pleiotropic QTL or two linked QTLs were located in the interval. However, the conclusion could be made ultimately by isolation of TGW3b. The strategy for TGW3b isolation is discussed.
While tetraploid plants of red clover are taller, have thicker stems, and have broader leaves that altogether result in a higher forage yield compared to diploids, they generally have substantially lower seed yields than diploid plants. Tetraploid red clover can be induced chemically by colchicine or nitrous oxide (N2O) and sexually by union of unreduced gametes. The average seed yield of tetraploid red clover in Norway is 60% of the diploid yield, while in Sweden it is 75%. One objective of this paper was to examine whether there is a difference in seed yield among chromosome doubled tetraploids and crossed tetraploids. A second objective was to investigate differences in seed yield and seed yield components in Norwegian and Swedish tetraploid populations. The third objective was to study which yield component most correlates with the seed yield per hectare. Seed production experiments were established at Landvik and Bjørke in Norway and Svalöv and Lännäs in Sweden. Populations made by crossings of tetraploids gave significantly greater yield (p < 0.001) compared to populations that were made by chromosome doubling. On average, Norwegian and Swedish varieties had equal yields in both experimental years. Norwegian and Swedish varieties differed mostly in earliness traits. Swedish populations began flowering on average 4 d earlier than Norwegian populations. Genotypic correlations showed that seed yield per flower head was the component with the highest correlation (r = 0.956 and r = 0.977) with yield per hectare in both experimental fields. Results from the second experimental year indicate a trend towards improved seed yield after several cycles of recurrent selection for higher seed yield per flower head.
The thousand-grain weight and spikelets per panicle directly contribute to rice yield. Heading date and plant height also greatly influence the yield. Dissection of genetic bases of yield-related traits would provide tools for yield improvement. In this study, quantitative trait loci (QTL) mapping for spikelets per panicle, thousand-grain weight, heading date and plant height was performed using recombinant inbred lines derived from a cross between two diverse cultivars, Nanyangzhan and Chuan7. In total, 20 QTLs were identified for four traits. They were located to 11 chromosomes except on chromosome 4. Seven and five QTLs were detected for thousand-grain weight and spikelets per panicle, respectively. Four QTLs were identified for both heading date and plant height. About half the QTLs were commonly detected in both years, 2006 and 2007. Six QTLs are being reported for the first time. Two QTL clusters were identified in regions flanked by RM22065 and RM5720 on chromosome 7 and by RM502 and RM264 on chromosome 8, respectively. The parent, Nanyangzhan with heavy thousand-grain weight, carried alleles with increased effects on all seven thousand-grain weight QTL, which explained why there was no transgressive segregation for thousand-grain weight in the population. In contrast, Chuan7 with more spikelets per panicle carried positive alleles at all five spikelets per panicle QTL except qspp5. Further work on distinction between pleiotropic QTL and linked QTL is needed in two yield-related QTL clusters.
Microbial ingredients such as Candida utilis yeast are known to be functional protein sources with immunomodulating effects whereas soybean meal causes soybean meal-induced enteritis in the distal intestine of Atlantic salmon (Salmo salar L.). Inflammatory or immunomodulatory stimuli at the local level in the intestine may alter the plasma proteome profile of Atlantic salmon. These deviations can be helpful indicators for fish health and, therefore potential tools in the diagnosis of fish diseases. The present work aimed to identify local intestinal tissue responses and changes in plasma protein profiles of Atlantic salmon fed inactive dry Candida utilis yeast biomass, soybean meal, or combination of soybean meal based diet with various inclusion levels of Candida utilis. A fishmeal based diet was used as control diet. Inclusion of Candida utilis yeast to a fishmeal based diet did not alter the morphology, immune cell population or gene expression of the distal intestine. Lower levels of Candida utilis combined with soybean meal modulated immune cell populations in the distal intestine and reduced the severity of soybean meal-induced enteritis, while higher inclusion levels of Candida utilis were less effective. Changes in the plasma proteomic profile revealed differences between the diets but did not indicate any specific proteins that could be a marker for health or disease. The results suggest that Candida utilis does not alter intestinal morphology or induce major changes in plasma proteome, and thus could be a high-quality alternative protein source with potential functional properties in diets for Atlantic salmon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.