Cocoa beans are the raw material for the chocolate industry. In this study, the total fat contents and fatty acid profiles of fine-aroma cocoa beans of 30 cocoa ecotypes from northeastern Peru were evaluated. Results showed that SJJ-1 and ACJ-11 ecotypes from San Martin and Amazonas regions, respectively, presented highest percentages of total fat with an average of 30.49%. With respect to fatty acid profiles, it was found that cocoa ecotypes are composed of 10 fatty acids (C14:0, C16:0, C16:1, C18:0, C17:0, C18:1, C18:2, C18:3, C20:0, and C22:0); based on this profile, 5 clusters were determined. Cluster 5 had the highest content of C17:0 fatty acid (0.47%); however, the clusters 1, 2, 3, and 4 had the lowest content of this fatty acid (0.37%, 0.32%, 0.32%, respectively). The clusters 3 and 4 showed the highest content of C16:0 fatty acid (31.13% y 28.97%, respectively). The clusters 3 and 5 contained the highest content of the acid C18:1 (27.08% y 26.82%, respectively). The PCA found that C18:0 and C20:0 fatty acids are correlated, and are fundamentally opposite to C18:1, C16:0, and C18:3 acids. These results may be useful in identifying raw material for the development of specialty chocolates with better nutritional value than traditional cocoa.
Cocoa cultivation is of considerable economic and social importance to the Amazonas region and is commonly associated with forest species in the region. However, the diversification level and composition of cacao agroforestry systems in Peru are poorly understood. The objective of this study is, therefore, to describe the diversity of tree species in cocoa AFS by plantation age. Accordingly, the number of species of 15 plots covering a total of 1.5 hectares was recorded. Moderately low levels of tree species diversity were reported (H´ ranged 0.89–1.45). In total 17 species were reported throughout the study area. The most abundant botanical family was represented by a single Musa sp. species. The dissimilarity indices show a moderate similarity between the age ranges evaluated (over 62%). Additionally, the IVI indicates that the most important species are used for food and timber apart from providing shade, additionally major of this species are introduced intentionally for the farmers. Based on the observations, it may be concluded that the farmer’s interest in obtaining further benefits from the plot, mostly economic benefits affect the diversification of cocoa agroforestry systems.
The phenotypic characterization of cacao (Theobroma cacao L.) plays an important role in the generation of information for the conservation of cacao germplasm. The objective of this study is to characterize phenotypically 146 ecotypes of fine-aroma native cacao (FFNC) from northeastern Peru that were collected from 280 to 1265 metres above sea level. Morphological descriptors of fruits and seeds, sensory characteristics, and productivity descriptors were used. The data obtained were analyzed using descriptive statistics with pie charts, distribution histograms, and multiple correspondence analysis. The results showed that 76.7% of the cocoa ecotypes had green immature fruits, 73% showed slight roughness on the surface of the fruit, 54% showed an intermediate thickness of the fruit wall, and 90% had the appearance of pairs of equidistant ridges. Regarding seed characteristics, 71% showed purplish cotyledons, with a high presence of floral and fruity notes and low levels of bitterness and astringency. Likewise, 52% of the fruits and 64% of the seeds were long. More importantly, cocoa beans needed to produce between 14 and 16 pods to obtain one kilogram of dry cocoa, which reflects a good level of productivity. Finally, there was a positive relationship between elevation levels and the presence of fine-flavoured native cocoa, i.e., the greatest diversity of native cocoa with floral and fruity notes was found above 501 metres above sea level.
One way to mitigate climate change is by reducing atmospheric CO2 levels with the establishment of agroforestry systems (AFSs) that can capture and store atmospheric CO2. This study therefore estimated the carbon sequestration in two components, aboveground (cocoa trees, other tree species, and leaf litter) and soil, in 15 fine aroma cocoa AFSs in Amazonas, Peru. These cocoa AFSs had a minimum area of 1.5 ha and were distributed into three age groups (each group consisted of five systems or farms): young cocoa trees between 8 and 15 years old, middle-aged cocoa trees between 16 and 29 years old, and adult cocoa trees between 30 and more than 40 years old. Generalized linear mixed model (GLMM) analysis followed by Fisher’s LSD mean comparison test (p > 0.05) determined the significant level of total aboveground biomass and total carbon content in the AFSs’ components. The present findings confirm that Theobroma cacao, Mussa sp., Cordia sp., and Persea sp. were the most common species in all AFSs. Clearly, biomass and carbon content in Theobroma cacao and Cordia sp. increased slightly with age, while fruit species Mussa sp. and Persea sp. decreased with age. The total aboveground carbon stock in young cocoa tree systems (13.64 Mg ha−1) was lower than in middle-aged cocoa systems (20.50 Mg ha−1) and adult cocoa systems (24.86 Mg ha−1); nevertheless, no significant differences were found for any of the age ranges. On the other hand, carbon stocks in soil (up to 30 cm depth) in the AFSs ranged from 119.96 Mg ha−1 to 131.96 Mg ha−1. Meanwhile, the total carbon stored by aboveground and soil components in adults cocoa systems (156.81 Mg ha−1) was higher compared to middle-aged cocoa systems (140.60 Mg ha−1) and young cocoa systems (133.59 Mg ha−1), although no statistically significant differences were found. Eventually, the CO2 sequestration for young cocoa systems was 490.28 Mg ha−1, and middle-aged and adult cocoa system recorded more than 500 Mg ha−1 of CO2. Furthermore, these data can further be used by national governments, local governments, and organisations of producers, particularly in accessing payments for environmental services, which may improve economic incomes and contribute to climate change mitigation by reserving biomass and sequestering C from these agroforestry cocoa systems.
Lakes are water bodies that play an essential role as water sources for humanity, as they provide a wide range of ecosystem services. Therefore, this study aimed to evaluate Lake Pomacochas, a high Andean lake in the north of Peru. A variety of parameters were studied, including physicochemical parameters such as temperature (T°C), dissolved oxygen (DO), potential hydrogen (pH), electrical conductivity (EC), turbidity, total dissolved solids (TDS), biochemical oxygen demand (BOD), alkalinity, and chlorides hardness; the concentrations of nitrates, nitrites, sulfates, and ammonium; elements such as aluminum (Al), calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), and boron (B); as well as metals and metalloids such as zinc (Zn), cadmium (Cd), copper (Cu), lead (Pb), and arsenic (As). In addition, pH, Zn, and Cu were evaluated at the sediment level. It is important to note that all parameters evaluated in the water matrix showed significant differences in the seasonal period and depth levels. In comparison, the parameters evaluated at the sediment level had no significant differences between the seasonal period and sampling points. As for the seasonal period, the variables that were higher for the dry season were electrical conductivity, total dissolved solids, and lead while that for the wet season were biochemical oxygen demand, zinc, magnesium, turbidity, calcium, dissolved oxygen, temperature, and potential hydrogen. At the depth levels, parameters such as total dissolved solids, lead, and arsenic had similar behavior for the three depths evaluated. According to national standards, latent contamination by cadmium and lead was found in the lake water from the ecological risk assessment. However, by international standards, all sampling stations showed a high level of contamination by cadmium, lead, zinc, copper, and arsenic, which represents a potential risk for the development of socioeconomic activities in the lake. At the same time, the evaluation of sediments did not present any potential risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.