This paper considers massive access in massive multiple-input multiple-output (MIMO) systems and proposes an adaptive active user detection and channel estimation scheme based on compressive sensing. By exploiting the sporadic traffic of massive connected user equipments and the virtual angular domain sparsity of massive MIMO channels, the proposed scheme can support massive access with dramatically reduced access latency. Specifically, we design non-orthogonal pseudo-random pilots for uplink broadband massive access, and formulate the active user detection and channel estimation problems as a generalized multiple measurement vector compressive sensing problem. Furthermore, by leveraging the structured sparsity of the uplink channel matrix, we propose an efficient generalized multiple measurement vector approximate message passing (GMMV-AMP) algorithm to realize simultaneous active user detection and channel estimation based on a spatial domain or an angular domain channel model. To jointly exploit the channel sparsity presented in both the spatial and the angular domains for enhanced performance, a Turbo-GMMV-AMP algorithm is developed for detecting the active users and estimating their channels in an alternating manner. Finally, an adaptive access scheme is proposed, which adapts the access latency to guarantee reliable massive access for practical systems with unknown channel sparsity level. Additionally, the state evolution of the proposed GMMV-AMP algorithm is derived to predict its performance. Simulation results demonstrate the superiority of the proposed active user detection and channel estimation schemes compared to several baseline schemes.
Massive machine-type communications (mMTC) is envisioned to be one of the pivotal scenarios in the fifthgeneration (5G) wireless communication, where the explosively emerging Internet-of-Things (IoT) applications have triggered the demand for services with low-latency and high-reliability. To this end, grant-free random access paradigm has been proposed as a promising enabler in simplifying the connection procedure and significantly reducing access latency. In this paper, we propose to leverage the burgeoning reconfigurable intelligent surface (RIS) for grant-free massive access working at millimeter-wave (mmWave) frequency to further boost access reliability. By attaching independently controllable phase shifts, reconfiguring, and refracting the propagation of incident electromagnetic waves, the deployed RISs could provide additional diversity gain and enhance the access channel conditions. On this basis, to address the challenging active device detection (ADD) and channel estimation (CE) problem, we develop a joint-ADDCE (JADDCE) method by resorting to the existing approximate message passing (AMP) algorithm with expectation maximization (EM) to extract the structured common sparsity in traffic behaviors and cascaded channel matrices. Finally, simulations are carried out to demonstrate the superiority of our proposed scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.