It is known that all candidates in dark matter (DM) particles (neutrinos, axions, supersymmetric particles etc.) can not explain the basic properties of DM. The same can be said on the proposed candidates in dark energy (DE) (for example, quintessence). In the paper it is shown that some problems connected with DM and DE can be solved in the framework of the byuon theory. Basic axioms and some conclusions of this theory are discussed. The existence of fundamental unobserved elements in nature, byuons is declared. Physical space in our Universe is the quantum medium of special objects 4b, formed in four-contact interactions of byuons (m4b c2 ≈ 33eV). These objects determine the average density of substance (DM) in the Universe ~10-29 g cm-3. The byuon theory predicts a new interaction of natural objects with physical vacuum. This new force can cause the observed acceleration of our Universe. The estimations show that it is higher than the gravitational force at distances of order to 1026-1028 cm. Some other consequences of the byuon theory are considered
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.