A decade ago, two-dimensional microscopic flow visualization proved the theoretically predicted existence of electroconvection roles as well as their decisive role in destabilizing the concentration polarization layer at ion-selective fluid/membrane interfaces. Electroconvection induces chaotic flow vortices injecting volume having bulk concentration into the ion-depleted di↵usion layer at the interface. Experimental quantification of these important flow patterns have so far only been carried out in 2D. Numerical direct simulations suggest 3D features, yet experimental proof is lacking. 3D simulations are also limited in covering extended spacial and temporal scales.This study presents a new comprehensive experimental method for the time-resolved recording of the 3D electroconvective velocity field near a cationexchange membrane. For the first time, the spatio-temporal velocity field can be visualized in 3D at multiples of the overlimiting current density. In contrast to today's simulations, these experiments cover length and time scales typical for actual electrodialytic membrane processes.We visualize coherent vortex structures and reveal the changes in the velocity field and its statistics during the transition from vortex rolls to vortex ⇤
Operating electrochemical membrane processes beyond the limiting current density bears the potential to decrease the investment cost of desalination plants significantly. However, while there are strategies for successfully reducing energy demand by shortening the plateau region, their influence on the formation of electroconvection is still unknown.
This study demonstrates control over the electroconvective vortices' rotational direction and position using a surface patterning method. We compare the development of electroconvection at two membranes modified with patterns of different surface charges. We analyze the electroconvective vortex field's build-up, the vortices' rotational direction, and structural stability in the steady-state. Finally, we showcase the control possibilities by enforcing a specific structure along an asymmetric letter pattern. Such tailor-made patterns have the potential to diminish the plateau region's energy loss completely. Furthermore, the scale-up of these membranes to industrial processes will allow the economic operation in the overlimiting regime, significantly increasing their space-time yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.