We investigated the hypothesis that neurons encode rich naturalistic stimuli in terms of their spike times relative to the phase of ongoing network fluctuations rather than only in terms of their spike count. We recorded local field potentials (LFPs) and multiunit spikes from the primary visual cortex of anaesthetized macaques while binocularly presenting a color movie. We found that both the spike counts and the low-frequency LFP phase were reliably modulated by the movie and thus conveyed information about it. Moreover, movie periods eliciting higher firing rates also elicited a higher reliability of LFP phase across trials. To establish whether the LFP phase at which spikes were emitted conveyed visual information that could not be extracted by spike rates alone, we compared the Shannon information about the movie carried by spike counts to that carried by the phase of firing. We found that at low LFP frequencies, the phase of firing conveyed 54% additional information beyond that conveyed by spike counts. The extra information available in the phase of firing was crucial for the disambiguation between stimuli eliciting high spike rates of similar magnitude. Thus, phase coding may allow primary cortical neurons to represent several effective stimuli in an easily decodable format.
Distinct subtypes of inhibitory interneuron are known to shape diverse rhythmic activities in the cortex, but how they interact to orchestrate specific band activity remains largely unknown. By recording optogenetically tagged interneurons of specific subtypes in the primary visual cortex of behaving mice, we show that spiking of somatostatin (SOM)- and parvalbumin (PV)-expressing interneurons preferentially correlates with cortical beta and gamma band oscillations, respectively. Suppression of SOM cell spiking reduces the spontaneous low-frequency band (<30-Hz) oscillations and selectively reduces visually induced enhancement of beta oscillation. In comparison, suppressing PV cell activity elevates the synchronization of spontaneous activity across a broad frequency range and further precludes visually induced changes in beta and gamma oscillations. Rhythmic activation of SOM and PV cells in the local circuit entrains resonant activity in the narrow 5- to 30-Hz band and the wide 20- to 80-Hz band, respectively. Together, these findings reveal differential and cooperative roles of SOM and PV inhibitory neurons in orchestrating specific cortical oscillations.
The dentate gyrus is part of the hippocampal memory system and special in that it generates new neurons throughout life. Here we discuss the question of what the functional role of these new neurons might be. Our hypothesis is that they help the dentate gyrus to avoid the problem of catastrophic interference when adapting to new environments. We assume that old neurons are rather stable and preserve an optimal encoding learned for known environments while new neurons are plastic to adapt to those features that are qualitatively new in a new environment. A simple network simulation demonstrates that adding new plastic neurons is indeed a successful strategy for adaptation without catastrophic interference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.