OME as sustainable alternative diesel fuel burns without the agglomeration of soot particles which is the case for fossil and paraffinic diesel fuels. Nuclei mode particles are mainly of a volatile nature and do not survive exhaust aftertreatment.
This paper presents an experimental method for measuring heat generation rate in the permanent magnets of rotating electrical machines. The results obtained from the experimental work are used to derive an empirical correlation which is subsequently used to predict the total thermal energy stored in a magnet after a speed varying torque load. The results of an uncertainty analysis are offered in order to show the usefulness of the technique. An axial flux permanent magnet machine has been used as a case study in this work, though the methodology could certainly be applied to other topologies.
This paper describes the design and performance testing of a micropositioning, vibration isolation and suppression system, which can be used to position a piece of equipment with sub-micrometre accuracy and stabilize it against various types of external disturbance. The presented demonstrator was designed as part of a novel extremely open pre-polarization magnetic resonance imaging (MRI) scanner. The active control system utilizes six piezoelectric actuators, wide-bandwidth optical fibre displacement sensors and a very fast digital field programmable gate array (FPGA) controller. A PID feedback control algorithm with emphasis on a very high level of integral gain is employed. Due to the high external forces expected, the whole structure is designed to be as stiff as possible, including a novel hard mount approach with parallel passive damping for the suspension of the payload. The performance of the system is studied theoretically and experimentally. The sensitive equipment can be positioned in six degrees of freedom with an accuracy of ±0.2 µm. External disturbances acting on the support structure or the equipment itself are attenuated in three degrees of freedom by more than −20 dB within a bandwidth of 0-200 Hz. Excellent impulse rejection and input tracking are demonstrated as well.
Emissions of nitrogen oxides (NOx) from marine propulsion systems have gained public interest resulting in emission limits as defined by the International Maritime Organization (IMO) with IMO Tier III, especially for vessels operating in Emission Control Areas (ECA). The reduction of greenhouse gas emissions is also increasingly important for marine propulsion. Minimizing NOx while reducing climate impact calls for technologies such as the gas engine with aftertreatment systems, preferably with the ability to run on alternative fuels. A proven technology for reducing NOx in marine engines is the Selective Catalytic Reduction (SCR) aftertreatment system. It is also possible to avoid engine raw emissions by shifting the combustion process to lower temperature levels. Hydrogen is an alternative fuel with combustion properties enabling premixed operation at significantly higher air-fuel ratio than natural gas (NG) and thus, reducing raw NOx emissions. The study uses a systematic approach to compare emissions and efficiency of a lean-burn gas engine with a natural gas and a mild conversion hydrogen setup, utilizing two different strategies: combustion of NG with the assumption of an SCR catalyst and high raw NOx emissions and combustion of pure hydrogen using the NOx reduction potential of higher excess air. The scope of the study makes it possible to illustrate engine concepts for future applications in the displacement class of 4.8 L per cylinder. The highest efficiency of 45.3% was achieved with the natural gas engine and SCR. The concept with the lowest Global Warming Potential (GWP) was the hydrogen fueled engine under the prerequisite of using green hydrogen, accompanied by a reduction in efficiency of 0.6% compared to the efficiency optimum of NG with SCR. Assuming the use of gray hydrogen, the GWP was 48% and 52% higher than with NG and NG with SCR, respectively, at the efficiency-optimal operating points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.