Caffeic acid phenethyl ester (CAPE) has various biological activities but low water solubility and poor bioavailability. In this study, CAPE was encapsulated in skim milk powder (SMP) by spray drying warm aqueous ethanol solutions with different mass ratios of SMP and CAPE. The loading capacity and encapsulation efficiency were up to 10.1 and 41.7%, respectively. Differential scanning calorimetry and X-ray diffraction results confirmed the loss of crystallinity of CAPE after encapsulation. Fourier-transform infrared and fluorescence spectroscopy results indicated the hydrophobic binding between CAPE and caseins. Scanning electron microscopy and static light scattering results showed spherical capsules with an average diameter of around 26 μm. The CAPE loaded in SMP microcapsules showed significantly improved in vitro bioaccessibility and antiproliferation activity against human colon cancer cells compared to free CAPE. The simple, scalable, and low-cost approach in the present study may be significant for industrial encapsulation of CAPE and other lipophilic bioactive compounds.
Smoking is used to give food its typical aroma and to obtain the desired techno-functional properties of the product. To gain a deeper knowledge of the whole process of food smoking, a controllable smoking process was developed, and the influence of wood pyrolysis temperature (150–900 °C) on the volatile compounds in the smoking chamber atmosphere was investigated. The aroma profile of smoke was decoded by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). Subsequently, the correlations in the most important substance classes, as well as in individual target components, were investigated by the Pearson test. Phenols and lactones showed an increase over the entire applied temperature range (rT = 0.94 and rT = 0.90), whereas furans and carbonyls showed no strict temperature dependence (rT < 0.6). Investigations on single aroma compounds showed that not all compounds of one substance class showed the same behavior, e.g., guaiacol showed no significant increase over the applied pyrolysis temperature, whereas syringol and hydoxyacetone showed a plateau after 450 °C, and phenol and cyclotene increased linear over the applied temperature range. These findings will help to better understand the production of aroma-active compounds during smoke generation in order to meet consumers preferences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.