Global Navigation Satellite Systems (GNSSs) are ubiquitously relied upon for positioning and timing. Detection and prevention of attacks against GNSS have been researched over the last decades, but many of these attacks and countermeasures were evaluated based on simulation. This work contributes to the experimental investigation of GNSS vulnerabilities, implementing a relay/replay attack with off-the-shelf hardware. Operating at the signal level, this attack type is not hindered by cryptographically protected transmissions, such as Galileo's Open Service Navigation Message Authentication (OS-NMA). The attack we investigate involves two colluding adversaries, relaying signals over large distances, to effectively spoof a GNSS receiver. We demonstrate the attack using off-the-shelf hardware, we investigate the requirements for such successful colluding attacks, and how they can be enhanced, e.g., allowing for finer adversarial control over the victim receiver. CCS CONCEPTS• Security and privacy → Mobile and wireless security; • Networks → Location based services.
where he is currently pursuing his M.Sc. focused on IT security. He is currently writing his master thesis on GNSS security at the Networked Systems Security Group at the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.