The Laser Ranging Interferometer (LRI) instrument on the Gravity Recovery and Climate Experiment (GRACE) Follow-On mission has provided the first laser interferometeric range measurements between remote spacecraft, separated by approximately 220 km. Autonomous controls that lock the laser frequency to a cavity reference and establish the 5 degree of freedom two-way laser link between remote spacecraft succeeded on the first attempt. Active beam pointing based on differential wavefront sensing compensates spacecraft attitude fluctuations. The LRI has operated continuously without breaks in phase tracking for more than 50 days, and has shown biased range measurements similar to the primary ranging instrument based on microwaves, but with much less noise at a level of 1 nm/ √ Hz at Fourier frequencies above 100 mHz.
The Laser Ranging Interferometer onboard the Gravity Recovery and Climate Experiment Follow-On satellites is the first laser interferometer in space measuring satellite-to-satellite distance variations. One of its main noise sources at low frequencies is the so-called tilt-to-length coupling, caused by satellite pointing variations. This error is estimated by fitting a linear coupling model, making use of the so-called center-of-mass calibration maneuvers. These maneuvers are performed regularly for the original purpose of center-of-mass determination. Here, the results of the tilt-to-length estimations for the Laser Ranging Interferometer are presented in terms of coupling factors, which are all within 200 μm ⋅ rad −1 and thus meet the requirements. From these parameters, estimations of nadir and cross-track components of the spacecraft center-of-mass positions with respect to the interferometer reference point are derived, providing an additional method to track center-of-mass movement over time.Nomenclature p = spacecraft positions, m q = spacecraft attitude quaternions X = spacecraft state vector θ = intersatellite pointing angles, rad λ = tilt-to-length coupling factors, m ⋅ rad −1 ρ = intersatellite range, m ω = spacecraft angular velocities, rad ⋅ s −1
The GRACE Follow-On satellite mission measures distance variations between its two satellites in order to derive monthly gravity field maps, indicating mass variability on Earth on a scale of a few 100 km originating from hydrology, seismology, climatology and other sources. This mission hosts two ranging instruments, a conventional microwave system based on K(a)-band ranging (KBR) and a novel laser ranging instrument (LRI), both relying on interferometric phase readout. In this paper, we show how the phase measurements can be converted into range data using a time-dependent carrier frequency (or wavelength) that takes into account potential intraday variability in the microwave or laser frequency. Moreover, we analyze the KBR-LRI residuals and discuss which error and noise contributors limit the residuals at high and low Fourier frequencies. It turns out that the agreement between KBR and LRI biased range observations can be slightly improved by considering intraday carrier frequency variations in the processing. Although the effect is probably small enough to have little relevance for gravity field determination at the current precision level, this analysis is of relevance for detailed instrument characterization and potentially for future more precise missions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.