The facile manufacture of PA12 MWCNT/silica (50/50 by weight) nanocomposite powders through a high energy mixing process is presented, which are useful to generate 3D objects by a novel Laser Polymer Deposition (LPD) process. The mixing as well as the LPD process led to no discernible changes in the material properties (DSC, SEM, LD) of the core‐shell nanocomposites, enabling the recycling of unconverted powder. The built parts yield ultimate tensile stresses and Young's modulus at 10%–20% of the bulk material. Partially unmolten particles and voids were identified as the main mechanical failure mechanism in the built parts. The mechanical properties are better with low additive content (Young's modulus: 89.8 ± 5.4 MPa; UTS: 12.9 ± 5.3 MPa with 0.25 wt% additives). Electronic conductivity up to the region of moderate conductivity could be achieved by multiwalled carbon nanotube (MWCNT) network formation (8 × 10−4 S cm−1 at 1.25 wt% of additives). A variant of the processing strategy revealed that a higher mechanical strength can be achieved by a laser induced remelting of the traces following their initial construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.