This three-dimensional computer model study demonstrates the relationship between femoral torsional osteotomies and frontal plane alignment. Proximal external derotational osteotomies tend to result in an increased varus angulation, whilst distal external derotational osteotomies tend to result in an increased valgus angulation. As a clinical consequence, torsional osteotomies have an increased risk of unintentional implications on frontal plane alignment.
The outcome of secondary fracture healing processes is strongly influenced by interfragmentary motion. Shear movement is assumed to be more disadvantageous than axial movement, however, experimental results are contradictory. Numerical fracture healing models allow simulation of the fracture healing process with variation of single input parameters and under comparable, normalized mechanical conditions. Thus, a comparison of the influence of different loading directions on the healing process is possible. In this study we simulated fracture healing under several axial compressive, and translational and torsional shear movement scenarios, and compared their respective healing times. Therefore, we used a calibrated numerical model for fracture healing in sheep. Numerous variations of movement amplitudes and musculoskeletal loads were simulated for the three loading directions. Our results show that isolated axial compression was more beneficial for the fracture healing success than both isolated shearing conditions for load and displacement magnitudes which were identical as well as physiological different, and even for strain-based normalized comparable conditions. Additionally, torsional shear movements had less impeding effects than translational shear movements. Therefore, our findings suggest that osteosynthesis implants can be optimized, in particular, to limit translational interfragmentary shear under musculoskeletal loading. With the use of numerical models, distinct effects of different loading modes on fracture healing can be simulated. [17][18][19] Recently, we developed a numerical fracture healing algorithm, 20-22 which allows us to investigate the influence of single input parameters on the change in IFM and tissue distribution over the healing time. This enables a direct comparison between different mechanical conditions. Thus, according to experimental data, we identified more cartilage formation under axial compression than under shear loading conditions. 22The present study compares healing outcomes of different loading directions (i.e., axial compression, and translational and torsional shear) under normalized mechanical conditions using our calibrated sheep fracture healing algorithm. The aims were to identify adverse conditions and to explain them based on the predicted tissue development over time.From a mechanical point of view, translational shear and axial compressive loading lead to regions of compressive hydrostatic pressure (negative dilatational strain) which stimulate cartilage development, and therefore promote endochondral ossification. 2,[23][24][25] In contrast, torsional shear loading leads only to distortional strains without compressive hydrostatic pressure generation, which suppresses cartilage development.Thus, we hypothesize that differences in healing outcomes are because of differences in cartilage formation resulting from mechanical tissue strain conditions. METHODS Numerical Fracture Healing ModelWe used a numerical fracture healing simulation algorithm that w...
The stiffness of fracture fixation devices together with musculoskeletal loading defines the mechanical environment within a long bone fracture, and can be quantified by the interfragmentary movement. In vivo results suggested that this can have acceleratory or inhibitory influences, depending on direction and magnitude of motion, indicating that some complications in fracture treatment could be avoided by optimizing the fixation stiffness. However, general statements are difficult to make due to the limited number of experimental findings. The aim of this study was therefore to numerically investigate healing outcomes under various combinations of shear and axial fixation stiffness, and to detect the optimal configuration. A calibrated and established numerical model was used to predict fracture healing for numerous combinations of axial and shear fixation stiffness under physiological, superimposed, axial compressive and translational shear loading in sheep. Characteristic maps of healing outcome versus fixation stiffness (axial and shear) were created. The results suggest that delayed healing of 3 mm transversal fracture gaps will occur for highly flexible or very rigid axial fixation, which was corroborated by in vivo findings. The optimal fixation stiffness for ovine long bone fractures was predicted to be 1000–2500 N/mm in the axial and >300 N/mm in the shear direction. In summary, an optimized, moderate axial stiffness together with certain shear stiffness enhances fracture healing processes. The negative influence of one improper stiffness can be compensated by adjustment of the stiffness in the other direction.
Numerical models of secondary fracture healing are based on mechanoregulatory algorithms that use distortional strain alone or in combination with either dilatational strain or fluid velocity as determining stimuli for tissue differentiation and development. Comparison of these algorithms has previously suggested that healing processes under torsional rotational loading can only be properly simulated by considering fluid velocity and deviatoric strain as the regulatory stimuli. We hypothesize that sufficient calibration on uncertain input parameters will enhance our existing model, which uses distortional and dilatational strains as determining stimuli, to properly simulate fracture healing under various loading conditions including also torsional rotation. Therefore, we minimized the difference between numerically simulated and experimentally measured courses of interfragmentary movements of two axial compressive cases and two shear load cases (torsional and translational) by varying several input parameter values within their predefined bounds. The calibrated model was then qualitatively evaluated on the ability to predict physiological changes of spatial and temporal tissue distributions, based on respective in vivo data. Finally, we corroborated the model on five additional axial compressive and one asymmetrical bending load case. We conclude that our model, using distortional and dilatational strains as determining stimuli, is able to simulate fracture-healing processes not only under axial compression and torsional rotation but also under translational shear and asymmetrical bending loading conditions.
SummaryChronic environmental fluoride exposure under calcium stress causes fragility fractures due to osteoporosis and bone quality deterioration, at least in sheep. Proof of skeletal fluorosis, presenting without increased bone density, calls for a review of fracture incidence in areas with fluoridated groundwater, including an analysis of patients with low bone mass.IntroductionUnderstanding the skeletal effects of environmental fluoride exposure especially under calcium stress remains an unmet need of critical importance. Therefore, we studied the skeletal phenotype of sheep chronically exposed to highly fluoridated water in the Kalahari Desert, where livestock is known to present with fragility fractures.MethodsDorper ewes from two flocks in Namibia were studied. Chemical analyses of water, blood and urine were executed for both cohorts. Skeletal phenotyping comprised micro-computer tomography (μCT), histological, histomorphometric, biomechanical, quantitative backscattered electron imaging (qBEI) and energy-dispersive X-ray (EDX) analysis. Analysis was performed in direct comparison with undecalcified human iliac crest bone biopsies of patients with fluoride-induced osteopathy.ResultsThe fluoride content of water, blood and urine was significantly elevated in the Kalahari group compared to the control. Surprisingly, a significant decrease in both cortical and trabecular bones was found in sheep chronically exposed to fluoride. Furthermore, osteoid parameters and the degree and heterogeneity of mineralization were increased. The latter findings are reminiscent of those found in osteoporotic patients with treatment-induced fluorosis. Mechanical testing revealed a significant decrease in the bending strength, concurrent with the clinical observation of fragility fractures in sheep within an area of environmental fluoride exposure.ConclusionsOur data suggest that fluoride exposure with concomitant calcium deficit (i) may aggravate bone loss via reductions in mineralized trabecular and cortical bone mass and (ii) can cause fragility fractures and (iii) that the prevalence of skeletal fluorosis especially due to groundwater exposure should be reviewed in many areas of the world as low bone mass alone does not exclude fluorosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.