This paper presents the differences and similarities of ΔΣ-PWM as a hysteresis-based PWM scheme with direct torque control (DTC) using simulation models. The variable switching frequency caused by the hysteresis element is examined with regard to its instantaneous values. The comparison is based on an equal maximum switching frequency as a design criterion. With this first assumption, the variation of the instantaneous switching frequency is higher when using DTC because of the temporary prioritization of one inverter leg. Besides the lower variation, ΔΣ-PWM shows a higher average switching frequency. Because the switching frequency is related to the torque ripple, the usage of ΔΣ-PWM results in a smaller torque ripple. Due to the dependence of torque ripple on switching frequency, a second comparison is carried out based on the same average switching frequency. In this comparison the ΔΣ-PWM shows higher torque ripple than DTC.
Die erreichbare Regelgüte einer digitalen Regelungstruktur ist nicht ausschließlich abhängig vom Regelalgorithmus, sondern wird ebenso durch die Eigenschaften des digitalen Zielssystems beeinflusst. Im Rahmen dieses Beitrages wird ein neuartiger Ansatz zur digitalen Signalverarbeitung präsentiert, die ∆Σ-Signalverarbeitung (DSSV). Dieser reduziert den Umsetzungsaufwand digitaler Regelungsstrukturen bei gleichbleibender Regelqualitität. Die Gegenüberstellung der DSSV mit der klassischen digitalen Signalverabreitung erfolgt durch eine Implementierung einer oberschwingungsbehafteten Stromeinprägung in eine Synchronmaschine
In this paper, a novel hysteresis-based current control approach is presented. The basis of the developed control approach is the theory of switched systems, in particular, the system class of switched systems with multiple equilibria. The proposed approach guarantees the convergence of the state trajectory into a region around a reference trajectory by selective switching between the individual subsystems. Here, the reference trajectory is allowed to be time varying, but lies within the state space spanned by the subsystem equilibria. Since already published approaches only show convergence to a common equilibrium of all subsystems, the extension to the mentioned state space is a significant novelty. Moreover, the approach is not limited to the number of state variables, nor to the number of subsystems. Thus, the applicability to a large number of systems is given. In the course of the paper, the theoretical basics of the approach are first explained by referring to a trivial example system. Then, it is shown how the theory can be applied to a practical application of a voltage source converter that is connected to a permanent-magnet synchronous motor. After deriving the limits of the presented control strategy, a simulation study confirms the applicability on the converter system. The paper closes with a detailed discussion about the given results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.