Aerogels are highly porous solids that maintain the properties of individual nanomaterials at a macroscopic scale. However, the inability to fabricate hierarchical architectures limits technological implementation in energy storage, gas‐sorption, or catalysis. A 3D‐printing methodology for additive‐free TiO2 nanoparticle‐based aerogels is presented with full control of the nano‐, micro‐, and macroscopic length‐scales. To compensate for ink's low solid loading of 4.0 vol% and to enable subsequent processing into aerogels via supercritical drying, the printing is done in a liquid bath of alkaline pH. The 3D‐printing protocol retains a high specific surface area of 539 m2 g–1 and a mesopore diameter of 20 nm of conventionally casted aerogels while offering an unparalleled designability on the micrometer scale. To illustrate the new geometric freedom of 3D‐printed aerogels, the microstructure of a strongly light‐absorbing, photothermal Au‐nanorod/TiO2 aerogel is defined. To date, photothermal nanomaterials are mainly applied in the form of unstructured films where scalability is limited by light attenuation. Microstructures in 3D enhance light penetration by a factor of four and facilitate spatially defined heating on a macroscopic scale. The process can be generalized for a broad material library and allows to design inks with specific functionality, thus making aerogels adaptable for their target application.
3D Printing
In article number 2112914, Dorota Koziej and co‐workers utilize TiO2 nanoparticle‐based gels as additive‐free inks for 3D printing of structured aerogels. The TiO2 gels are loaded with plasmonic Au nanorods to facilitate photothermal heating of the aerogel. In general, diverse colloidal nanomaterials can be processed into inks and 3D printed, thus giving access to multifunctional aerogels with full control of the nano‐, micro‐, and macroscopic length scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.