The question of how to meet rising food demand at the least cost to biodiversity requires the evaluation of two contrasting alternatives: land sharing, which integrates both objectives on the same land; and land sparing, in which high-yield farming is combined with protecting natural habitats from conversion to agriculture. To test these alternatives, we compared crop yields and densities of bird and tree species across gradients of agricultural intensity in southwest Ghana and northern India. More species were negatively affected by agriculture than benefited from it, particularly among species with small global ranges. For both taxa in both countries, land sparing is a more promising strategy for minimizing negative impacts of food production, at both current and anticipated future levels of production.
1. Two solutions, at opposite ends of a continuum, have been proposed to limit negative impacts of human agricultural demand on biodiversity. Under land sharing, farmed landscapes are made as beneficial to wild species as possible, usually at the cost of lower yields. Under land sparing, yields are maximised and land not needed for farming is spared for nature. Multiple empirical studies have concluded that land-sparing strategies would be the least detrimental to wild species, provided the land not needed for agriculture is actually spared for nature. However, the possibility of imperfections in the delivery of land sparing has not been comprehensively considered.2. Land sparing can be imperfect in two main ways: land not required for food production may not be used for conservation (incomplete area sparing), and habitat spared may be of lower quality than that assessed in surveys (lower habitat quality sparing). Here we use published data relating population density to landscapelevel yield for birds and trees in Ghana (167 and 220 species respectively) and India (174 birds, 40 trees) to assess effects of imperfect land sparing on regionwide population sizes and hence population viabilities.3. We find that incomplete area and lower habitat quality imperfections both reduce the benefits of a land-sparing strategy. However, sparing still outperforms sharing whenever ≥28% of land that could be spared is devoted to conservation, or the quality of land spared is ≥29% of the value of that surveyed. Thresholds are even lower under alternative assumptions of how population viability relates to population size and for species with small global ranges, and remain low even when both imperfections co-occur. 4. Comparison of these thresholds with empirical data on the likely real-world performance of land sparing suggests that reducing imperfections in its delivery would be highly beneficial. Nevertheless, given plausible relationships between population size and population viability, land sparing outperforms land sharing despite its imperfections.
Policy implications.Our results confirm that real-world difficulties in implementing land sparing will have significant impacts on biodiversity. They also underscore the need for strategies which explicitly link yield increases to setting land aside for conservation,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.