In diffusion MRI, the Ensemble Average diffusion Propagator (EAP) provides relevant micro-structural information and meaningful descriptive maps of the white matter previously obscured by traditional techniques like Diffusion Tensor Imaging (DTI). The direct estimation of the EAP, however, requires a dense sampling of the Cartesian q-space involving a huge amount of samples (diffusion gradients) for proper reconstruction. A collection of more efficient techniques have been proposed in the last decade based on parametric representations of the EAP, but they still imply acquiring a large number of diffusion gradients with different b-values (shells). Paradoxically, this has come together with an effort to find scalar measures gathering all the q-space micro-structural information probed in one single index or set of indices. Among them, the return-to-origin (RTOP), return-to-plane (RTPP), and return-to-axis (RTAP) probabilities have rapidly gained popularity. In this work, we propose the so-called "Apparent Measures Using Reduced Acquisitions" (AMURA) aimed at computing scalar indices that can mimic the sensitivity of state of the art EAP-based measures to micro-structural changes. AMURA drastically reduces both the number of samples needed and the computational complexity of the estimation of diffusion properties by assuming the diffusion anisotropy is roughly independent from the radial direction. This simplification allows us to compute closed-form expressions from single-shell information, so that AMURA remains compatible with standard acquisition protocols commonly used even in clinical practice. Additionally, the analytical form of AMURA-based measures, as opposed to the iterative, non-linear reconstruction ubiquitous to full EAP techniques, turns the newly introduced apparent RTOP, RTPP, and RTAP both robust and efficient to compute.
In diffusion MRI, the Ensemble Average diffusion Propagator (EAP) provides relevant microstructural information and meaningful descriptive maps of the white matter previously obscured by traditional techniques like the Diffusion Tensor. The direct estimation of the EAP, however, requires a dense sampling of the Cartesian q-space. Due to the huge amount of samples needed for an accurate reconstruction, more efficient alternative techniques have been proposed in the last decade. Even so, all of them imply acquiring a large number of diffusion gradients with different b-values. In order to use the EAP in practical studies, scalar measures must be directly derived, being the most common the return-to-origin probability (RTOP) and the return-to-plane and return-to-axis probabilities (RTPP, RTAP).In this work, we propose the so-called "Apparent Measures Using Reduced Acquisitions" (AMURA) to drastically reduce the number of samples needed for the estimation of diffusion properties. AMURA avoids the calculation of the whole EAP by assuming the diffusion anisotropy is roughly independent from the radial direction. With such an assumption, and as opposed to common multi-shell procedures based on iterative optimization, we achieve closed-form expressions for the measures using information from one single shell. This way, the new methodology remains compatible with standard acquisition protocols commonly used for HARDI (based on just one b-value). We report extensive results showing the potential of AMURA to reveal microstructural properties of the tissues compared to state of the art EAP estimators, and is well above that of Diffusion Tensor techniques. At the same time, the closed forms provided for RTOP, RTPP, and RTAP-like magnitudes make AMURA both computationally efficient and robust.
The white matter (WM) architecture of the human brain changes in response to training, though fine-grained temporal characteristics of training-induced white matter plasticity remain unexplored. We investigated white matter microstructural changes using diffusion tensor imaging at five different time points in 26 sighted female adults during 8 months of training on tactile braille reading. Our results show that training-induced white matter plasticity occurs both within and beyond the trained sensory modality, as reflected by fractional anisotropy (FA) increases in somatosensory and visual cortex, respectively. The observed changes followed distinct time courses, with gradual linear FA increase along the training in the somatosensory cortex and sudden visual cortex cross-modal plasticity occurring after braille input became linguistically meaningful. WM changes observed in these areas returned to baseline after the cessation of learning in line with the supply-demand model of plasticity. These results also indicate that the temporal dynamics of microstructural plasticity in different cortical regions might be modulated by the nature of computational demands. We provide additional evidence that observed FA training-induced changes are behaviorally relevant to tactile reading. Together, these results demonstrate that WM plasticity is a highly dynamic process modulated by the introduction of novel experiences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.