This research program focuses on a hybrid experimental and numerical approach to identifying the mechanical state in the vicinity of a crack. The digital image correlation, as corrected by interpolating a theoretical displacement field, enables determining the crack opening intensity factors representative of the kinematic state of crack lips. A finite element model is introduced for calculating stress intensity factors. The parallelism derived from the DIC method and FEM approach is presented by means of a specific identification algorithm that allows computing the energy release rate within a common finite element mesh. This algorithm is then illustrated by testing the opening-mode configuration for a PVC sample.
In this paper a new formalism based on the complementarity between the optical full field techniques and integral invariant Mtheta is proposed in order to evaluate the fracture parameters in cracked specimen made of wood, under mixed mode loadings. The coupling between the experimental and numerical approaches allows identifying the fracture parameters in terms of energy release rate without any the material elastic properties such as the elastic modulus and the Poissons ratio. The proposed formalism allows also determining, in addition with the fracture parameters, the local elastic properties in terms of reduced elastic compliance. The fracture mixed mode tests are realized using a Single Edge Notch sample made in Douglas with the Arcan fixtures and dried to 11% moisture content and the crack is cutting in Radial-Longitudinal system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.