The ability of benzothiadiazole (BTH) and/or humic acid (HA) used as seed soaking to induce systemic resistance against a pathogenic strain of Fusarium oxysporum was examined in four soybean cultivars under greenhouse conditions. Alone and in combination the inducers were able to protect soybean plants against damping-off and wilt diseases compared with check treatment. These results were confirmed under field conditions in two different locations (Minia and New Valley governorates). The tested treatments significantly reduced damping-off and wilt diseases and increased growth parameters, except the number of branches per plant and also increased seed yield. Application of BTH (0.25 g/L) + HA (4 g/L) was the most potent in this respect. Soybean seed soaking in BTH + HA produced the highest activities of the testes of oxidative enzymes followed by BTH in the four soybean cultivars. HA treatment resulted in the lowest increases of these oxidative enzymes. Similar results were obtained with total phenol but HA increased total phenol more than did BTH in all tested cultivars.
Powdery mildew, caused by Blumeria graminis (DC.) Speer f. sp. tritici (Em. Marchal), is a serious disease of wheat that can cause a large reduction in yield. In Egypt, high powdery mildew severity has been observed in the past few years on many commercial cultivars of both bread and durum wheat. Little information is available about virulence characteristics of the Egyptian B. graminis f. sp. tritici population in Egypt or the resistance of Egyptian wheat cultivars to powdery mildew. Virulence frequencies of a representative sample of the Egyptian B. graminis f. sp. tritici population were studied. Seven provinces were chosen to represent the country: two in Upper Egypt (Qena and Sohag), one in Middle Egypt (El Minia), and four in the north (Alexandria, Kafr Elsheikh, Dakahlia, and Sharqia). Ten isolates from each province (70 isolates total) were derived from single ascospores and used for this study. They were inoculated individually on 21 powdery mildew differential lines, each bearing a single resistance (Pm) gene. Also, the responses of 14 Egyptian bread wheat cultivars and 6 durum cultivars to each of the 70 isolates were evaluated individually. Among all tested Pm genes, only seven (Pm1b, Pm2, Pm21, Pm34, Pm36, Pm37, and Pm53) were effective against B. graminis f. sp. tritici isolates from all provinces. Several other genes were effective against most or all isolates from a majority of provinces. All tested bread wheat cultivars showed full susceptibility to all isolates, whereas two durum wheat cultivars, Beni-Suef-5 and Beni-Suef-6, had intermediate responses to a large percentage of the isolates, likely indicating partial resistance. To enhance mildew resistance in Egyptian wheat cultivars, it is recommended to use combinations of genes that are nationally effective or effective against multiple provincial B. graminis f. sp. tritici populations.
Ten isolates of Fusarium spp were isolated from pepper plants collected from different locations in New Valley Governorate, Egypt. Fusarium solani isolate FP2 and F. oxysporum isolate FP4 were highly pathogenic isolates but the other isolates moderate or less pathogenic to pepper plants (cv. Anaheim-M). The four antioxidant compounds (coumaric acid, citric acid, propylgalate and salicylic acid each at 100 and 200 ppm) were evaluated for their in vitro and in vivo agonist to Fusarium pathogenic isolates caused root rot and wilt diseases in pepper plants. All tested antioxidant compounds reduced damping-off, root rot/wilt and area under root rot/wilt progress curve when used as seed soaking, seedling soaking, and soil drench especially at 200 ppm under greenhouse and field conditions compared with untreated plants. All chemicals increased fresh and dry weight of seedling grown in soil drenching or seed treatment with any antioxidants. At the same time, all tested chemicals significantly increase plant growth parameters i.e plant length, plant branching, and total yield per plant in case of seedling soaking or soil drench. In general, propylgalate at 200 ppm was more efficient in reducing infection with damping-off, root rot and wilt diseases as well as increasing the seedling fresh weight, dry weight, plant length, plant branching, number of pod plant -1 and pod yield plant -1. On the other hand, all tested antioxidants had less or no effect on mycelial dry weight and mycelial leaner growth. On the contrary, all chemicals much reduced spore formation in both Fusarium species at 100 or 200 ppm and the inhibitory effect of antioxidants increased with increasing their concentrations.
The ability of benzothiadiazole (BTH), humic acid (HA) and their combination when used as seed soaking to induce systemic resistance against a pathogenic strain of Fusarium oxysporum was examined in four soybean cultivars under greenhouse conditions. Both inducers and their combination were able to protect soybean plants against damping-off and wilt diseases compared with check treatment. These results were confirmed under field conditions in two different locations, Minia and New Valley governorates. The tested treatments significantly reduced damping-off and wilt diseases and increased growth parameters, except number of branches plant -1 , and seed yield. Application of BTH (0.25) + HA (4 g/l) was the most potent in this respect treatment. Soybean seed soaking in BTH + HA recorded the highest activities of the testes of oxidative enzymes followed by BTH in the four soybean cultivars. Whereas, HA treatment was recorded the lowest increased of these oxidative enzymes. Also, similar results were obtained in case of total phenol but HA increased the total phenol more than BTH in all tested cultivars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.