A novel gene for quinolone resistance was cloned from a transferable plasmid carried by a clinical isolate of Shigella flexneri 2b that was resistant to fluoroquinolones. The plasmid conferred low-level resistance to quinolones on Escherichia coli HB101. The protein encoded by the gene showed 59% amino acid identity with Qnr.
A dramatic rise in the frequency of resistance to adamantane drugs by influenza A (H3N2) viruses has occurred in recent years -- from approximately 2% to approximately 90% in multiple countries worldwide-and associated with a single S31N amino acid replacement in the viral matrix M2 protein. To explore the emergence and spread of these adamantane resistant viruses we performed a phylogenetic analysis of recently sampled complete A/H3N2 genome sequences. Strikingly, all adamantane resistant viruses belonged to a single lineage (the "N-lineage") characterized by 17 amino acid replacements across the viral genome. Further, our analysis revealed that the genesis of the N-lineage was due to a 4+4 segment reassortment event involving 2 distinct lineages of influenza A/H3N2 virus. A subsequent study of hemagglutinin HA1 sequences suggested that the N-lineage was circulating widely in Asia during 2005, and then dominated the Northern hemisphere 2005-2006 season in Japan and the USA. Given the infrequent use of adamantane drugs in many countries, as well as the decades of use in the US associated with little drug resistance, we propose that the globally increasing frequency of adamantane resistance is more likely attributable to its interaction with fitness-enhancing mutations at other genomic sites rather than to direct drug selection pressure. This implies that adamantanes may not be useful for treatment and prophylaxis against influenza viruses in the long term. More generally, these findings illustrate that drug selection pressure is not the sole factor determining the evolution and maintenance of drug resistance in human pathogens.
Spinal and bulbar muscular atrophy (SBMA) is one of a group of human inherited neurodegenerative diseases caused by polyglutamine expansion. We have previously demonstrated that the SBMA gene product, the androgen receptor protein, is toxic and aggregates when truncated. Heat shock proteins function as molecular chaperones, which recognize and renaturate misfolded protein (aggregate). We thus assessed the effect of a variety of chaperones in a cultured neuronal cell model of SBMA. Overexpression of chaperones reduces aggregate formation and suppresses apoptosis in a cultured neuronal cell model of SBMA to differing degrees depending on the chaperones and their combinations. Combination of Hsp70 and Hsp40 was the most effective among the chaperones in reducing aggregate formation and providing cellular protection, reflecting that Hsp70 and Hsp40 act together in chaperoning mutant and disabled proteins. Although Hdj2/Hsdj chaperone has been previously reported to suppress expanded polyglutamine tract-formed aggregate, Hsdj/Hdj2 showed little effect in our system. These findings indicate that chaperones may be one of the key factors in the developing of CAG repeat disease and suggested that increasing expression level or enhancing the function of chaperones will provide an avenue for the treatment of CAG repeat disease.
Virtually all organisms respond to up-shifts in temperature (heat shock) by synthesizing a set of proteins called heat shock proteins (HSPs). The HSPs are induced not only by heat shock but also by various other environmental stresses. Induction of HSPs is regulated by the trans-acting heat shock factors (HSFs) and cis-acting heat shock element (HSE) present at the promoter region of each heat shock gene. Usually, HSPs are also expressed constitutively at normal growth temperatures and have basic and indispensable functions in the life cycle of proteins as molecular chaperones, as well as playing a role in protecting cells from the deleterious stresses. Molecular chaperones are able to inhibit the aggregation of partially denatured proteins and refold them using the energy of ATP. Recently, there are expectations for the use of molecular chaperones for the protection against and therapeutic treatment of inherited diseases caused by protein misfolding. In this review, the focus will be on the mammalian Hsp40, a homologue of bacterial DnaJ heat shock protein, and the beneficial functions of molecular chaperones.
We have cloned 10 novel full-length cDNAs of mouse and human HSP40/DNAJ homologs using expressed sequence tag (EST) clones found in the DDBJ/GenBank/EMBL DNA database. In this report, we tentatively designated them mHsp40, mDj3, mDj4, mDj5, mDj6, mDj7, mDj8, hDj9, mDj10, and mDj11. Based on the identity of the deduced amino acid sequences, mHsp40, mDj3, and mDj11 are orthologs of human Hsp40, rat Rdj2, and human Tpr2, respectively. We determined that mDj4 is identical with the recently isolated mouse Mrj (mammalian relative of DnaJ). PSORT analysis (a program that predicts the subcellular localization site of a given protein from its amino acid sequences) revealed that hDj9 has an N-terminal signal peptide; hence, its localization might be extracellular, suggesting that there may be a partner Hsp70 protein that acts together with the hDj9 outside of the cell. The same analysis indicated that mDj7 and mDj10 may have transmembrane domains. In order to simplify the complicated and confusing nomenclature of recently identified mammalian HSP40/DNAJ homologs, we propose here some new rules for their nomenclature. This proposed nomenclature includes the name of species with 2 lowercase letters such as hs (Homo sapiens), mm (Mus musculus) and rn (Rattus norvegicus); Dj standing for DnaJ; the name of types with A, B, and C, which were previously classified as type I, II, and III according to the domain structure of the homologs; and finally Arabic numerals according to the chronological order of registration of the sequence data into the database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.