One key adaptation that Mycobacterium tuberculosis established to survive long term in vivo is a reliance on lipids as an energy source. M. tuberculosis H37Rv has 36 fadD genes annotated as putative fatty acyl-CoA synthetase genes, which encode enzymes that activate fatty acids for metabolism. One such gene, fadD5 (Rv0166), is located within the mce1 operon, a cluster of genes associated with M. tuberculosis persistence. We disrupted the putative fatty acid binding site of fadD5 in H37Rv M. tuberculosis. No significant differences were found in the growth of the mutant and wild-type strains in vitro in nutrient-rich broth or in activated RAW264.7 cells. However, the fadD5 mutant was diminished in growth in minimal medium containing mycolic acid, but not other long-chain fatty acids. C57BL/6 mice infected with the fadD5 mutant survived significantly longer than those infected with wild-type, and the mutant never attained the plateau phase of infection in the mouse lungs. The steady-state infection phase was maintained for up to 168 days at a level one to two logs less than that shown by wild-type. These observations raise a rather intriguing possibility that FadD5 may serve to recycle mycolic acids for the long-term survival of the tubercle bacilli.
Cutaneous angiosarcoma (CAS) is a malignant sarcoma with poor prognosis. Programmed cell death-1 (PD-1)/programmed cell death-1 ligand-1 (PD-L1) expression reflects antitumor immunity, and is associated with patient prognosis in various cancers. The purpose of this study is to investigate the relationship between PD-1/PD-L1 expression and CAS prognosis. CAS cases (n D 106) were immunohistochemically studied for PD-L1 and PD-1 expression, and the correlation with patient prognosis was analyzed. PD-L1 expression was assessed by flow cytometry on three CAS cell lines with or without IFNg stimulation. A total of 30.2% of patients' samples were positive for PD-L1, and 17.9% showed a high infiltration of PD-1-positive cells. Univariate analysis showed a significant relationship between a high infiltration of PD-1-positive cells with tumor site PD-L1 expression and favorable survival in stage 1 patients (p D 0.014, log-rank test). Multivariable Cox-proportional hazard regression analysis also showed that patients with a high infiltration of PD-1-positive cells with tumor site PD-L1 expression were more likely to have favorable survival, after adjustment with possible confounders (hazard ratio (HR) D 0.38, p D 0.021, 95% confidence interval (CI) 0.16-0.86). Immunofluorescence staining of CAS samples revealed that PD-L1-positive cells were adjacent to PD-1-positive cells and/or tumor stroma with high IFNg expression. In vitro stimulation with IFNg increased PD-L1 expression in two out of three established CAS cell lines. Our results suggest that PD-1/PD-L1 expression is related to CAS progression, and the treatment with anti-PD-1 antibodies could be a new therapeutic option for CAS.
Angiosarcoma is a malignant vascular tumor originating from endothelial cells of blood vessels or lymphatic vessels. The specific driver mutations in angiosarcoma remain unknown. In this study, we investigated this issue by transcriptome sequencing of patient-derived angiosarcoma cells (ISO-HAS), identifying a novel fusion gene NUP160-SLC43A3 found to be expressed in 9 of 25 human angiosarcoma specimens that were examined. In tumors harboring the fusion gene, the duration between the onset of symptoms and the first hospital visit was significantly shorter, suggesting more rapid tumor progression. Stable expression of the fusion gene in nontransformed human dermal microvascular endothelial cells elicited a gene-expression pattern mimicking ISO-HAS cells and increased cell proliferation, an effect traced in part to NUP160 truncation. Conversely, RNAi-mediated attenuation of NUP160 in ISO-HAS cells decreased cell number. Confirming the oncogenic effects of the fusion protein, subcutaneous implantation of NUP160-SLC43A3-expressing fibroblasts induced tumors resembling human angiosarcoma. Collectively, our findings advance knowledge concerning the genetic causes of angiosarcoma, with potential implications for new diagnostic and therapeutic approaches.Cancer Res; 75(21); 4458-65. Ó2015 AACR.
Anti-programmed cell death receptor-1 (PD-1) antibodies represent an effective treatment opinion for advanced melanoma and non-small-cell lung cancer, as well as other cancerous entities. Immune checkpoint inhibitors such as anti-PD-1 antibody result in a unique side-effect profile, commonly described as immune-related adverse events (irAE). These irAE affect the skin, gastrointestinal tract, liver, endocrine system and other organ systems. We report two cases of oral lichenoid reaction showing multiple ulcers associated with nivolumab treatment. Both patients presented with multiple ulcers covered with fibrinous plaque over the entire oral mucosa, lips and tongue. Histopathological examination of ulceration showed epithelial necrosis and subepidermal clefts with dense band-like layers of lymphohistiocytic infiltrate within the upper dermis. Nivolumab was interrupted in both cases. Case 1 responded well to topical corticosteroids. Case 2 required oral corticosteroids, however, nivolumab could be restarted without recurrence of oral ulcers. We provide a comprehensive review of reported cases of lichenoid reaction showing multiple oral ulcers associated with anti-PD-1 therapy to date. Early recognition and management may improve treatment, avoid discontinuation of life-saving therapy and maintain quality of life in these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.