To obtain baseline data for human papillomavirus (HPV) screening and vaccination in Japan, we analyzed HPV DNA data from 2282 Japanese women ( P ersistent infection with oncogenic human papillomaviruses (HPV), most commonly types 16 and 18, leads to cervical cancer, the second most common cancer in women worldwide.(1) Therefore, oncogenic HPV testing combined with cytology was approved for primary screening in the USA, because of sensitivity and cost-effectiveness.(2) In addition, HPV vaccines have been licensed in the USA, Australia, and European and other countries, because of their efficacy and safety. Clinical studies of HPV vaccines have demonstrated close to 100% protection against HPV16-and HPV18-related infections and diseases, (3)(4)(5) implying possible cross-protection against HPV45, HPV31, and HPV52.(4,5) Based on evidence from clinical trials, (3)(4)(5)(6)(7) these two tools targeting HPV (detection assay and vaccine) are becoming increasingly attractive for cervical cancer prevention worldwide. In Japan, however, HPV DNA testing is still unavailable in mass screening and no HPV vaccine has yet been licensed. Type-specific and age-related data of HPV prevalence, both for women with normal cytology and for women with cervical diseases, are prerequisites to make a well-judged decision about the future role of HPV screening and vaccination in cervical cancer prevention, but these data are missing in Japan. A meta-analysis of Japanese HPV studies provided representative data of HPV type distribution, but no information about age-specific prevalence.In the present study, we analyzed HPV DNA data from 2282 Japanese women to obtain the prevalence data of HPV among women across a broad age range. Our data may help provide models for further evaluating potential impact and cost effectiveness of HPV screening and vaccination in Japan. Materials and MethodsStudy subjects. Our study subjects consisted of 2282 Japanese women (1517 normal HPV detection and genotyping. Exfoliated cells from the ectocervix and endocervix were collected into a tube containing 1 mL PBS and stored at -30°C until DNA extraction. We detected HPV DNA in cervical samples by PCR-based methodology described previously.(9) In brief, total cellular DNA was extracted from cervical samples by a standard sodium dodecyl sulfateproteinase K procedure. HPV DNA was amplified by PCR using consensus primers (L1C1 and L1C2 + L1C2 M) for the HPV L1 region. Direct comparisons of HPV detection methodology have demonstrated that the sensitivity of our PCR assay is higher than that of PCR assays using MY09 and MY11 and GP17 and GP18 primers. (10,11) A reaction mixture without template DNA was included in every set of PCR runs as a negative control. Also, primers for a fragment of the β-actin gene were used as a control to rule out false-negative results for samples in which HPV DNA was not detected. To avoid contamination, we used disposable utensils and discarded them after a single use. We also used aliquoted reagents and maintained separate locations ...
Persistent infection with oncogenic human papillomaviruses (HPVs) causes cervical cancer, accompanied by the accumulation of somatic mutations into the host genome. There are concomitant genetic changes in the HPV genome during viral infection; however, their relevance to cervical carcinogenesis is poorly understood. Here, we explored within-host genetic diversity of HPV by performing deep-sequencing analyses of viral whole-genome sequences in clinical specimens. The whole genomes of HPV types 16, 52, and 58 were amplified by type-specific PCR from total cellular DNA of cervical exfoliated cells collected from patients with cervical intraepithelial neoplasia (CIN) and invasive cervical cancer (ICC) and were deep sequenced. After constructing a reference viral genome sequence for each specimen, nucleotide positions showing changes with >0.5% frequencies compared to the reference sequence were determined for individual samples. In total, 1,052 positions of nucleotide variations were detected in HPV genomes from 151 samples (CIN1, = 56; CIN2/3, = 68; ICC, = 27), with various numbers per sample. Overall, C-to-T and C-to-A substitutions were the dominant changes observed across all histological grades. While C-to-T transitions were predominantly detected in CIN1, their prevalence was decreased in CIN2/3 and fell below that of C-to-A transversions in ICC. Analysis of the trinucleotide context encompassing substituted bases revealed that TpCpN, a preferred target sequence for cellular APOBEC cytosine deaminases, was a primary site for C-to-T substitutions in the HPV genome. These results strongly imply that the APOBEC proteins are drivers of HPV genome mutation, particularly in CIN1 lesions. HPVs exhibit surprisingly high levels of genetic diversity, including a large repertoire of minor genomic variants in each viral genotype. Here, by conducting deep-sequencing analyses, we show for the first time a comprehensive snapshot of the within-host genetic diversity of high-risk HPVs during cervical carcinogenesis. Quasispecies harboring minor nucleotide variations in viral whole-genome sequences were extensively observed across different grades of CIN and cervical cancer. Among the within-host variations, C-to-T transitions, a characteristic change mediated by cellular APOBEC cytosine deaminases, were predominantly detected throughout the whole viral genome, most strikingly in low-grade CIN lesions. The results strongly suggest that within-host variations of the HPV genome are primarily generated through the interaction with host cell DNA-editing enzymes and that such within-host variability is an evolutionary source of the genetic diversity of HPVs.
Venous thromboembolism (VTE) often occurs after surgery and can even occur before surgery in patients with gynaecological malignancies. We investigated the incidence of VTE before treatment of endometrial cancer and associated risk factors. Plasma D-dimer (DD) levels before initial treatment were examined in 171 consecutive patients with endometrial cancer. Venous ultrasound imaging (VUI) of the lower extremities was performed in patients with DD X1.5 mg ml À1 , as the negative predictive value of DD for VTE is extremely high. For patients with deep vein thrombosis (DVT), pulmonary scintigraphy was performed to ascertain the presence of pulmonary thromboembolism (PTE). Risk factors for VTE were analysed using univariate and multivariate analyses for 171 patients. Of these, 37 patients (21.6%) showed DD X1.5 mg ml À1 , 17 (9.9%) displayed DVT by VUI and 8 (4.7%) showed PTE on pulmonary scintigraphy. All patients with VTE were asymptomatic. Univariate analysis for various risk factors revealed older age, non-endometrioid histology and several variables of advanced disease as significantly associated with VTE before treatment. Obesity, smoking and diabetes mellitus were not risk factors. Multivariate analysis confirmed extrauterine spread and non-endometrioid histology as independently and significantly associated with risk of VTE. These data suggest that silent or subclinical VTE occurs before treatment in at least around 10% of patients with endometrial cancer. Risk factors for VTE before treatment might not be identical to those after starting treatment.
ObjectiveWe conducted a pooled analysis of published studies to compare the performance of human papillomavirus (HPV) testing and cytology in detecting residual or recurrent diseases after treatment for cervical intraepithelial neoplasia grade 2 or 3 (CIN 2/3).MethodsSource articles presenting data on posttreatment HPV testing were identified from the National Library of Medicine (PubMed) database. We included 5,319 cases from 33 articles published between 1996 and 2013.ResultsThe pooled sensitivity of high-risk HPV testing (0.92; 95% confidence interval [CI], 0.90 to 0.94) for detecting posttreatment CIN 2 or worse (CIN 2+) was much higher than that of cytology (0.76; 95% CI, 0.71 to 0.80). Co-testing of HPV testing and cytology maximized the sensitivity (0.93; 95% CI, 0.87 to 0.96), while HPV genotyping (detection of the same genotype between pre- and posttreatments) did not improve the sensitivity (0.89; 95% CI, 0.82 to 0.94) compared with high-risk HPV testing alone. The specificity of high-risk HPV testing (0.83; 95% CI, 0.82 to 0.84) was similar to that of cytology (0.85; 95% CI, 0.84 to 0.87) and HPV genotyping (0.83; 95% CI, 0.81 to 0.85), while co-testing had reduced specificity (0.76; 95% CI, 0.75 to 0.78). For women with positive surgical margins, high-risk HPV testing provided remarkable risk discrimination between test-positives and test-negatives (absolute risk of residual CIN 2+ 74.4% [95% CI, 64.0 to 82.6] vs. 0.8% [95% CI, 0.15 to 4.6]; p<0.001).ConclusionOur findings recommend the addition of high-risk HPV testing, either alone or in conjunction with cytology, to posttreatment surveillance strategies. HPV testing can identify populations at greatest risk of posttreatment CIN 2+ lesions, especially among women with positive section margins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.