The 21st century has seen rapid changes in technology, industry, and social patterns. Most industries have moved towards automation, and human intervention has decreased, which has led to a revolution in industries, named the fourth industrial revolution (Industry 4.0). Industry 4.0 or the fourth industrial revolution (IR 4.0) relies heavily on the Internet of Things (IoT) and wireless sensor networks (WSN). IoT and WSN are used in various control systems, including environmental monitoring, home automation, and chemical/biological attack detection. IoT devices and applications are used to process extracted data from WSN devices and transmit them to remote locations. This systematic literature review offers a wide range of information on Industry 4.0, finds research gaps, and recommends future directions. Seven research questions are addressed in this article: (i) What are the contributions of WSN in IR 4.0? (ii) What are the contributions of IoT in IR 4.0? (iii) What are the types of WSN coverage areas for IR 4.0? (iv) What are the major types of network intruders in WSN and IoT systems? (v) What are the prominent network security attacks in WSN and IoT? (vi) What are the significant issues in IoT and WSN frameworks? and (vii) What are the limitations and research gaps in the existing work? This study mainly focuses on research solutions and new techniques to automate Industry 4.0. In this research, we analyzed over 130 articles from 2014 until 2021. This paper covers several aspects of Industry 4.0, from the designing phase to security needs, from the deployment stage to the classification of the network, the difficulties, challenges, and future directions.
Choosing the right university program can be very challenging for students. This is especially the case in developing countries such as India and Pakistan, where university admission depends on not only the program of interest but also other factors such as the candidate's financial standing. Since information on the Internet can be highly scattered, university candidates often need counseling from qualified people to decide their educational programs. Traditional database systems cannot effectively organize the large unstructured data related to university programs. It is challenging, then, for prospective students to acquire the information needed to make good decisions to consider factors such as personal preferences, available options, and the job market. This study proposes an integrated framework that takes advantage of the latest ontology-based semantic technologies. The proposed system can efficiently extract user-specific constraints in unambiguous queries and then retrieve more precise information. The system uses Web sources to ingest the right information and then extract explicit and implicit knowledge about educational domains and related university offerings. We believe the proposed system can effectively and efficiently choose an educational program by incorporating user constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.