The deformation transient following large subduction zone earthquakes is thought to originate from the interaction of viscoelastic flow in the asthenospheric mantle and slip on the megathrust that are both accelerated by the sudden coseismic stress change. Here, we show that combining insight from laboratory solid-state creep and friction experiments can successfully explain the spatial distribution of surface deformation in the first few years after the 2011 Mw 9.0 Tohoku-Oki earthquake. The transient reduction of effective viscosity resulting from dislocation creep in the asthenosphere explains the peculiar retrograde displacement revealed by seafloor geodesy, while the slip acceleration on the megathrust accounts for surface displacements on land and offshore outside the rupture area. Our results suggest that a rapid mantle flow takes place in the asthenosphere with temporarily decreased viscosity in response to large coseismic stress, presumably due to the activation of power-law creep during the post-earthquake period.
SUMMARY
We propose a model of numerical simulation for the coexistence of afterslip for ∼M7 earthquake and slow slip events in the Hyuga‐nada region of Japan that incorporates 3‐D geometry of the Philippine Sea Plate. Coseismic slip events, recurrence of slow slip events and afterslip are qualitatively reproduced using the composite law, which is a type of rate‐ and state‐dependent friction law with higher cut‐off velocity. In addition, characteristic slip distances in the area are larger than those in other seismic source areas. In our simulation, afterslip, which occurred at the velocity‐weakening regime, triggered an aseismic transient event. After the termination of this event, spontaneous slow slip events repeatedly occurred in the same area. After a similar event sequence was repeated, another afterslip occurrence triggered a larger coseismic slip in a wide area including that of the slow slip events. Following this coseismic slip, the aseismic slip area was locked until the next afterslip propagation, which triggered an aseismic transient event. These results suggest that detailed observation of spatial and temporal distribution within the area of aseismic slip may indicate the potential of recurring slow slip events and future large earthquakes.
We show possible scenarios for the occurrence of M ~ 7 interplate earthquakes prior to and following the M ~ 9 earthquake along the Japan Trench, such as the 2011 Tohoku-Oki earthquake. One such M ~ 7 earthquake is so-called the Miyagi-ken-Oki earthquake, for which we conducted numerical simulations of earthquake generation cycles by using realistic three-dimensional (3D) geometry of the subducting Pacific Plate. In a number of scenarios, the time interval between the M ~ 9 earthquake and the subsequent Miyagi-ken-Oki earthquake was equal to or shorter than the average recurrence interval during the later stage of the M ~ 9 earthquake cycle. The scenarios successfully reproduced important characteristics such as the recurrence of M ~ 7 earthquakes, coseismic slip distribution, afterslip distribution, the largest foreshock, and the largest aftershock of the 2011 earthquake. Thus, these results suggest that we should prepare for future M ~ 7 earthquakes in the Miyagi-ken-Oki segment even though this segment recently experienced large coseismic slip in 2011.
Changes in plate coupling off the coast of Fukushima have been detected by GPS since 2000.These changes occurred close to the rupture initiation area of the M w 9.0 2011 Tohoku earthquake and possibly initiated the earthquake. We investigated these changes with quasi-dynamic earthquake cycle simulations using a hierarchical asperity model. We modeled the entire rupture region as rate weakening but conditionally stable, while areas with huge slips and M w 7 asperities were modeled as strong and ordinary rate-weakening unstable friction, respectively. The following observed characteristics were reproduced: long recurrence time, large rupture region (including a localized huge coseismic slip area and source area of recurring M w 7 earthquakes), and a M w 7 foreshock triggering the Tohoku earthquake. Off Fukushima, repeated aseismic slips propagating northward appeared in the last half of the cycle and possibly caused the decrease in plate coupling. However, it is not necessarily related to the immediate occurrence of the giant earthquake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.