The tribological properties of trifluorotris(pentafluoroethyl) phosphate [(C 2 F 5 ) 3 PF 3 -, FAP]-derived ionic liquids were evaluated under boundary conditions. The anion is hydrophobic in comparison with bis(trifluoromethylsulfonyl)imide [(CF 3 SO 2 ) 2 N -, TFSI]. 1,3-Dialkyli midazolium salts of FAP provided much lower friction than 1,3-dialkylimidazolium salts of TFSI. In addition, the FAP salts exhibit better anti-wear properties than the TFSI salts. Another advantage of the FAP anion is availability of several cations to prepare ionic liquids. For example, tetraalkyl phosphonium, N,N-dialkylpyrrolidium, and tetramethylisouronium salts of FAP provided friction coefficient of approximately 0.1. Straight-chain carboxylic acids as model friction-reducing additives improved the tribological properties of the FAP salts. Surface analyses were conducted to study the boundary film formed by rubbing. It was found that the boundary film is composed of adsorbed anion on uppermost surfaces and reacted anion on sub-surfaces. The model friction-reducing additives were found on the rubbed surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.