Currently, the improvement in AI is mainly related to deep learning techniques that are employed for the classification, identification, and quantification of patterns in clinical images. The deep learning models show more remarkable performance than the traditional methods for medical image processing tasks, such as skin cancer, colorectal cancer, brain tumour, cardiac disease, Breast cancer (BrC), and a few more. The manual diagnosis of medical issues always requires an expert and is also expensive. Therefore, developing some computer diagnosis techniques based on deep learning is essential. Breast cancer is the most frequently diagnosed cancer in females with a rapidly growing percentage. It is estimated that patients with BrC will rise to 70% in the next 20 years. If diagnosed at a later stage, the survival rate of patients with BrC is shallow. Hence, early detection is essential, increasing the survival rate to 50%. A new framework for BrC classification is presented that utilises deep learning and feature optimization. The significant steps of the presented framework include (i) hybrid contrast enhancement of acquired images, (ii) data augmentation to facilitate better learning of the Convolutional Neural Network (CNN) model, (iii) a pre‐trained ResNet‐101 model is utilised and modified according to selected dataset classes, (iv) deep transfer learning based model training for feature extraction, (v) the fusion of features using the proposed highly corrected function‐controlled canonical correlation analysis approach, and (vi) optimal feature selection using the modified Satin Bowerbird Optimization controlled Newton Raphson algorithm that finally classified using 10 machine learning classifiers. The experiments of the proposed framework have been carried out using the most critical and publicly available dataset, such as CBIS‐DDSM, and obtained the best accuracy of 94.5% along with improved computation time. The comparison depicts that the presented method surpasses the current state‐of‐the‐art approaches.
Abstract-Data mining has recently emerged as an important field that helps in extracting useful knowledge from the huge amount of unstructured and apparently un-useful data. Data mining in health organization has highest potential in this area for mining the unknown patterns in the datasets and disease prediction. The amount of work done for cardiovascular patients in Pakistan is scarcely very less. In this research study, using classification approach of machine learning, we have proposed a framework to classify unstructured data of cardiac patients of the Armed Forces Institute of Cardiology (AFIC), Pakistan to four important classes. The focus of this study is to structure the unstructured medical data/reports manually, as there was no structured database available for the specific data under study. Multi-nominal Logistic Regression (LR) is used to perform multiclass classification and 10-fold cross validation is used to validate the classification models, in order to analyze the results and the performance of Logistic Regression models. The performancemeasuring criterion that is used includes precision, f-measure, sensitivity, specificity, classification error, area under the curve and accuracy. This study will provide a road map for future research in the field of Bioinformatics in Pakistan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.